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Centrality of a node measures its relative importance within a network. There are a number of applications
of centrality, including inferring the influence or success of an individual in a social network, and the
resulting social network dynamics. While we can compute the centrality of any node in a given network
snapshot, a number of applications are also interested in knowing the potential importance of an individual
in the future. However, current centrality is not necessarily an effective predictor of future centrality. While
there are different measures of centrality, we focus on degree centrality in this paper. We develop a method
that reconciles preferential attachment and triadic closure to capture a node’s prominence profile. We show
that the proposed node prominence profile method is an effective predictor of degree centrality. Notably,
our analysis reveals that individuals in the early stage of evolution display a distinctive and robust signature
in degree centrality trend, adequately predicted by their prominence profile. We evaluate our work across
four real-world social networks. Our findings have important implications for the applications that require
prediction of a node’s future degree centrality, as well as the study of social network dynamics.

S
ocial networks spurred by digital innovations, such as Facebook, LinkedIn, and Twitter, make up an
increasingly wide range of diverse human interactions. These social networks are dynamic and evolve over
time, wherein new nodes enter a network, new links may form between nodes or old links may diminish

between nodes, and a node’s centrality may change over time. Thus, the node and the network co-evolve, where
the node impacts the network and the network impacts the node, creating an intertwined effect of centrality and
relative position of the node1. As the network evolves, we are interested in knowing the predictability of centrality
of a node. Prediction of centrality can lead us to infer influence, importance and/or success of a given individual in
a social network. We use the popular degree centrality as a metric in this paper (various studies have found
centrality measures to be correlated2,3).

Over the last decade, network evolution modeling focused on defining basic mechanisms driving link creation
and capturing different properties observed in real networks, such as power-law degree distribution, small
diameter, and clustering coefficient as a function of node degree centrality8,10,19. However, the network evolution
drives not only the emergence of macroscopic scaling of social networks but also the microscopic behaviors of
individuals. The Barabasi-Albert model8 provides a mechanism for the emergence of scale-free property in social
networks, where new links are established preferentially to well connected individuals. It is also evident that
preferential attachment is not sufficient to reproduce other important features of social networks, and individual’s
link formation also significantly relies on its neighbors12,20. The principle of triadic closure has been empirically
demonstrated to be relevant for several macroscopic scaling laws in the work of9,17–23, explicitly or implicitly. The
triadic closure mechanism is based on the premise that two individuals with mutual friends have a higher
probability to establish a link. These two principles successfully capture the main characteristics of social net-
works. However preferential attachment requires global information while triadic closure only needs local
information20. Triadic closure captures the notion of relative position of a node.

Irrespective of the specific mechanisms that act to drive the emergence of macroscopic scaling of social
networks, it is reasonable to ask whether such mechanisms also shape the microscopic behaviors of individuals
— the degree centrality change. Can we effectively predict degree centrality of a node in the future? We find that
the current degree centrality is a weak predictor of the future degree centrality. Rather, the degree centrality
evolution is an artifact of both the centrality (preferential attachment) of the node and its relative position (triadic
closure) in the network, and is a suitable proxy for interpreting the evolution of a network from a microscopic
perspective. We define this combination of centrality and position as prominence. A node may become important
over time, which may be a result of its individual achievement or neighborhood structure, which represent aspects
of preferential attachment and triadic closure respectively. A node is prominent if the links to the node make it
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visible to the other nodes in the network5,6. The prominence of a node
also depends on the overall structure of its neighborhood. This paper
develops a methodological framework that characterizes the prom-
inence of an individual by reconciling the trade-offs between pref-
erential attachment and triadic closure, that is the microscopic level,
and develops a model to predict degree centrality of a node in the
future. We call our framework the Node Prominence Profile (NPP).

Formally, the Node Prominence Profile is defined as follows:
Definition 1. Node Prominence Profile Node Prominence Profile

for a node v, written as NPP(v), is a vector describing the occurrence
frequencies of node v in five different positions of three isomorphic
triad substructures (Figure 1).

In Figure 1 we demonstrate 5 automorphism positions in 3 triad
sub-structures. These three triad sub-structures were discussed in
social balance theory proposed by Heider30. To compute the node
prominence profile for an individual node v, we just need to find out
all triad sub-structures where node v is located; and then we count
how many times node v occurs in each automorphism position (see
Supporting Information, 2.3). In this way a high degree centrality
node tends to be located in many triad 1 and triad 2 sub-structures,
and has high occurrence frequencies in position 1 and position 4
correspondingly. Based on the principle of preferential attachment,
they are more likely to attach new links in future. Nodes in position 2
are not necessarily isolated, they just do not have direct links with
other two nodes in such a sub-structure (Triad 1). Clearly nodes in
position 2 have potential to develop new links in future. Driven by
triadic closure effect, triad 2 tends to evolve to triad 3, thus nodes
having high occurrence frequencies in position 3 are more likely to
attach new links. Triad 3 is a stable sub-structure30, as the propensity
of attaching new links for the nodes having high occurrence frequen-
cies in position 5 is relatively small. Positions in these three triad
structures embody both principles — preferential attachment and
triadic closure.

The empirical experiments reveal that NPP is able to provide more
precise prediction of node’s future degree centrality over baseline
solutions. NPP is validated on four different social networks. We
also demonstrate that the model developed on one social network
and predict on another social network (transfer learning), thus dem-
onstrating the generalization capacity of NPP and confirming that it
is effective in capturing the general factors underlying social network
evolution impacting the degree centrality of a node.

Results
Node Prominence Profile. As we posited, prominence is not only
represented in the node’s centrality but also in the node’s position
in local structure. Much effort has been devoted to measuring
the node’s centrality, such as degree centrality, Pagerank4,
Betweenness24, and Closeness25. Here we will demonstrate that
modeling prominence can lead to a much improved prediction
about a node’s future degree centrality in the network than
modeling current state-of-the-art centrality measures.

Triadic Closure Effect on Degree Centrality Evolution. The effect of
preferential attachment on the degree centrality evolution is evident8.
However, the prominence of a node not only includes its centrality
but also its position in local neighborhood, and the principle of
preferential attachment is inherently unable to describe node’s posi-
tion in local structure20. The triadic closure principle provides us an
alternate solution. We first study the effect of triadic closure on the
degree centrality evolution. The quantity of triadic closure (or struc-
tural balance) can be defined as below12 (Supporting Information,
2.2):

balance rate~
3|number of closed triads
number of connected triads

ð1Þ

By studying the sub-networks of important (high degree centrality)
or non-important (low degree centrality) nodes (based on Pareto
Principle11, we partition nodes into important and non-important
nodes based on their degree centrality, denoted as IN and NIN, see
Methods and Supporting Information, 1.2), we observe that initially
the sub-network of future important (having high degree centrality
in future) nodes has a lower balance rate than the sub-network of
future non-important nodes, but the former sub-network evolves to
form a more balanced topology (Figure 2 (a)). There are several
implications: 1) there exist connections between the triadic closure
and the degree centrality evolution. In addition, new links are more
likely to form between nodes located in an unbalanced sub-network;
2) The initial sub-network where future important nodes are located
is more imbalanced than that of future non-important nodes, thus
position of node can be indicative of its future degree centrality.
These findings are demonstrated to be statistically significant at
95% confidence even if we scale the threshold value of important
nodes, such as 10%, 30% and 50% (see Supporting Information, 2.2).
This implies the possible effect of triadic closure on both the node’s
degree centrality and its position in local neighborhood.

As suggested in the principle of triadic closure, a ‘‘forbidden’’
triad12 (triad 2 in Figure 1) is more likely to attach new links. In order
to demonstrate that position is crucial for the degree centrality evolu-
tion, we provide the evolution ratio of two types of triads in Figure 1.
For a triad structure, if there are new links attached, then we say this
triad structure evolves. And for a specific type of triads (i.e., triad 1),
we calculate how many percentage of them evolve and denote that as
the evolution ratio (see Supporting Information, 2.2). We can see that
the ‘‘forbidden’’ triad (triad 2) has much higher probability to attach
a new link than a disconnected sub-structure triad 1 (Figure 2 (b)).
This implies that nodes in different genres of triads have different
probabilities to develop degree centrality. This leads us to an import-
ant conclusion: the positions of nodes in sub-structures determine
their future orbits in both essential prominence elements for describ-
ing degree centrality evolution. Our methodological framework
called, the Node Prominence Profile (Definition 1), incorporates
these insights in the modeling for the node’s prominence (Figure 1;
(Supporting Information, 2.3)).

Positions in Triad Structure. In Figure 1 we enumerate all possible
five positions in the triad sub-structures described in Definition 1.
We observe that the position of a node within its local structure is
related with its degree centrality evolution. For instance in Figure 2
(b) nodes in ‘‘forbidden’’ triad are more likely to attract new links
(Supporting Information, 2.3). Thus, different positions of a node in
corresponding triads should have distinct descriptive power of
degree centrality evolution.

In Figure 2 (c) we provide the significance of different centrality
measures and position incidence values in indicating node’s future
degree centrality (IN or NIN in future).

We observe (see Figure 2 (c)) that the centrality measures are
not performing well in describing a node’s future degree centrality
except degree centrality and betweenness centrality. At the same time

Figure 1 | Node Prominence Profile. In this figure, we mark 5

automorphism positions (labeled with v) in 3 triad structures. The node

prominence profile of a node v, is a vector describing the occurrence

frequencies of node v in these 5 automorphism positions.
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several position incidence values are significantly better in inferring a
node’s latent degree centrality. In the experiment the sets of INt1DT

(nodes with high degree centrality at time t 1 DT) and NINt1DT

(nodes with low degree centrality at time t 1 DT) (Supporting
Information, 1.2) are labeled based on the degree centrality
(Figure 2). We note that the degree centrality metric itself does not
have the most significant correlation with node’s future degree cent-
rality when DT is large (Supporting Information, 1.2). Based on these
observations, we have several conclusions: 1) different positions have
different power in describing node’s future degree centrality; 2) three
of them are much better than centrality measures themselves. To
summarize, even though the centrality measures are demonstrated
to be good at centrality (relative importance in the network) quan-
tification, they are not powerful enough to depict the node’s future
degree centrality. This is because, the preferential attachment is not
the only origin underlying the social network dynamics12,19,20.
Additionally we can observe that positions in triad structures embody
both principles—preferential attachment and triadic closure. Triad
position 1 and 4 reflect the effect of preferential attachment, while
triad position 3 manifests the triadic closure principle. This confirms
our propositions made above and provides a possible way to balance
the effects between preferential attachment and triadic closure and
model two essential elements of node’s degree centrality effectively.

As triadic closure principle suggests, for the unclosed triad (triad 2)
new links are attached between nodes in position 3, however we have

observed that nodes having high occurrences in position 4 are more
likely to have high degree centrality in future. One possible reason
underlying such phenomenon is, nodes in position 4 have higher
attraction to links (preferential attachment). However in Figure 2
(c) we already identify that degree centrality does not have a com-
parable performance as the position 4. To further investigate this, we
calculated the conditional probability of position 3 and position 4,
Prob(3j4) states the probability that a node shows up in position 3 in
one triad given the condition that it is located in position 4 in a
different triad; Prob(4j3) is the probability that a node is located in
position 4 given the condition that it is also in position 3. In Figure 2
(d) we can see that nodes in position 4 have extremely high prob-
ability to be located in position 3 (close to 1.0), while nodes in posi-
tion 3 have less than 0.3 probability to be in position 4. This means,
nodes in position 4 are influenced by both mechanisms of preferen-
tial attachment and triadic closure, while nodes in position 3 are
mainly affected by the triadic closure principle. This explains why
position 4 has higher significance level than position 3. This also
reflects an important property of these positions in triad struc-
tures—they combine the two well known social principles (i.e. pref-
erential attachment and triadic closure).

Prominence: Centrality and Position. In order to demonstrate that
prominence is not only represented in the node’s centrality but also
in the node’s position in local structure, we provide a detailed

Figure 2 | Microscopic Prominence Analysis. (a) Structural Balance Rate. For the nodes joining the network Gt at the same time t, based on their degree

centrality in the network Gt1Dt after Dt timestamps, we divide them into two sets Important Nodes and Non Important Nodes (see Supporting

Information, 1.2 for detail). (left) In the network Gt we extract the sub-networks of IN and NIN and calculate their balance rates correspondingly. We

observe that the IN sub-network has a lower balance rate than the NIN sub-network. (right) Similarly in the network Gt1Dt we extract the sub-networks of

IN and NIN, the IN sub-network has a larger balance rate than the NIN sub-network. (b) Triad Evolution Rate. In four datasets we compute the link

formation probability within different kinds of triads, we call it triad evolution rate. We observe that the ‘‘forbidden’’ triad (triad 2) (Figure 1) has much

higher probability to form a new link than the disconnected sub-structure triad 1.(Supporting Information, 2.3). (c) Significance of Inferring Future

Degree Centrality. We consider these centrality measures and positions as predictors of future degree centrality, we show the p-value associated with each

feature and its corresponding significance level under Wald test (Supporting Information, 2.3). (d) Position Conditional Probability. We calculated the

conditional probability of position 3 and position 4 (see Figure 1), Prob(3 | 4) states the probability that a node shows up in position 3 given the condition

that it is located in position 4; Prob(4 | 3) is the probability that a node is located in position 4 given the condition that it is also in position 3. We can see that

nodes in position 4 have high probability to be located in position 3, while nodes in position 3 have less than 0.3 probability to occur in position 4.

*: p , 0.1; **: p , 0.05; ***: p , 0.01, ****: p , 0.001.
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investigation into their interaction from the perspective of influence
events and provide the evidence that the NPP is able to model both
centrality and position information. In order to validate their
connections, we define link influence (Figure 3) between two nodes
u and v (Supporting Information, 2.4).

Definition 2. For a given node u in the time-varying network G 5

(V, E, TV, TE) (see Supporting Information, 1.2 Definition 3), u is said
to have a link action on node w at time t if (u, w) g E and t g TE(u,
w). TV is the log of nodes joining timestamps, while TE is the log of
edge formation timestamps.

Additionally we provide the definition of the link influence of node
u on its neighbor v as follows:

Definition 3. A node u is said to have a link influence on its
neighbor v iff: 1) there is a link action of node u with another node
w at time t; 2) there exists a link action of node v with node w at time
t9; 3) min(TE(u, v)) , t , t9 and t9 2 t , s.

The s is the average action delay between two nodes u and v. An
example of link influence is presented in Figure 3.

We divide the nodes into two groups (important nodes and non
important nodes), as considered in Figure 2. As shown, in Figure 3,
we partition the link influence event into 23 5 8 categories based on
nodes’ degree centrality; ‘1’ indicates an important node (high degree
centrality) and ‘0’ indicates a non important node (low degree cent-
rality). In Figure 4 we provide the distribution of several patterns, and
we observe that: 1) j1XXj . j0XXj and jX1Xj . jX0Xj (j1XXj is the
number of link influence events where node u is an important node,
Figure 3), this means important nodes have much higher probability
to have link influence on their neighbors, and it also validates the
principle of preferential attachment; 2) additionally jXX0j . jXX1j,
non-important nodes play an important role to transfer link influ-
ence; 3) j11Xj. j00Xj, this states that link influence is more likely to
happen between important nodes; 4) j10Xj< j01Xj, if link influence
occurs among important nodes and non-important nodes, then
important nodes and non-important nodes have the same chance
to initiate the influence. These patterns persist in four different real-
world networks and are proved to be statistically significant (see
Supporting Information, 2.4). Thus, this further implies that inter-
actions between degree centrality and position (link formation leads
to the change of node’s position) are common in social networks.

Prediction of Future Degree Centrality. The NPP method
described above allows us to investigate two aspects of node’s
prominence. We present empirical analysis to validate that our
method is able to more effectively predict a node’s future degree
centrality than the state-of-art methods.

Inferring Future Degree Centrality. In Table 1, we provide an empir-
ical comparison of the performance for the problem of degree cent-
rality prediction in terms of AUROC (Area under the ROC curve)
and AUPR (Area Under the Precision-Recall Curve) (see Methods).
Our approach, NPP, outperforms three baseline methods in terms of
AUPR, and has better or comparable performance in terms of
AUROC. All method includes existing state-of-the-art centrality
measures, which is described in Supporting Information, 3.1. We
have several conclusions: 1) the principle preferential attachment is
just one dimension of mechanisms underlying the nodal degree
centrality evolution; 2) the trade-offs between triadic closure and
preferential attachment are well balanced in NPP and then it achieves
better performance in the degree centrality prediction task.
Additionally our model NPP is also able to predict nodes’ future
degree centrality and yield better performance than the state-of-art
methods (see Supporting Information, 3.3). This further confirms
the correctness and effectiveness of our methodology.

Generality of Node Prominence Profile: Prediction Across Datasets.
We have demonstrated that the NPP has a stronger generalization
capacity than state-of-the-art centrality measures in predicting
future degree centrality. To be rigorous, we now ask: are these
features powerful enough to transfer learning from one social
network to another? That is, can a model developed on one social
network effectively predict for another social network? If our
framework is able to generalize across datasets, then it will further
demonstrate that our framework captures the essential principles of
degree centrality evolution.

Generalization of the Degree Centrality Prediction. In Figure 5, we
provide the transfer learning (transfer of learning is usually described
as the process and the effective extent to which past experiences
(trained model) affect performance (prediction) in a new situation
or data different from the one that the model was trained on) results
for All model and NPP model. Each pair of generalization is trained
on the row dataset and evaluated on the column dataset. Transfer
learning generally leads to the loss in performance. In Figure 5 we
provide the performance loss of transferred learning compared with
the performance of non-transfer learning (where training and testing
are conducted on the same dataset). Thus, the diagonal entries all
have performance loss as zero.

There are several observations. We observe that the NPP’s per-
formance degrades remarkably less than the All method in most
cases. This indicates that the prominence profile of node captures
principles that are more generic than the state-of-the-art centrality
measures, and this still holds even if the generalization is across
different domains of networks. This further confirms that the prom-
inence profile is a general cross-domain property for the degree
centrality evolution analysis. In conclusion, the prominence profile
is notably more generic across different domains of networks, and
the state-of-the-art centrality based method is more particular to a
specific dataset.

Discussion
We analyzed several principles/mechanisms underlying the network
evolution, mainly focusing on two essential elements of the node’s
prominence: centrality and position. We demonstrated that the posi-
tion of a node in a local structure is strongly indicative of the degree
centrality progression in the social network. Building on this obser-
vation, we developed a prediction method referred to as NPP. We
empirically demonstrated the effectiveness of NPP by demonstrating
improvement in performance over the state-of-art methods for the
problem of degree centrality prediction in four different datasets. We
further established the generalization capacity of our methods under
a transfer learning scenario — we learned the classifier on one social
network (using the proposed features) and tested on another social
network. The performance trends clearly showed that our approach

Figure 3 | Link Influence Events. On the left side, we demonstrate the link

influence of node u on its neighbor v. Node u has a link action with node w

at time t, and node v has a link action with node w at time t9. And the gap

between t and t9 is smaller than a threshold s. s is the average action delay

between two nodes u and v. On the right side, we enumerate all possible

kinds of link influence events if nodes in the network are partitioned into

important nodes and non-important nodes. The three digits encode the

degree centrality status of the three nodes, u, v, and w, ‘1’ indicates an

important node (high degree centrality) and ‘0’ indicates a non important

node (low degree centrality). Thus there are 8 kinds of link influence

events.
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is able to capture essential properties or features underlying degree
centrality evolution, which are general across different domains of
social networks.

Our methodology (NPP) is validated to optimize trade-offs
between essential dimensions of network evolution (preferential
attachment and triadic closure). Therefore, it is not surprising that,
as a consequence, our approach yields accurate and generic perform-
ance in predicting node’s future degree centrality. Our method can be

effectively used in a variety of applications that rely on inferring a
node’s importance in the future, as captured by centrality measures.
In summary, we have developed a new perspective for growth in
degree centrality of a node in a social network and developed a
general purpose feature vector that can be used by different machine
learning algorithms across different social networks.

Methods
Data Description. In this paper we examine our approaches and perform our analysis
on four social networks. The Condmat network13 is extracted from a stream of 19,464
multi-agent events representing condensed matter physics collaborations from 1995
to 2000. Based on the DBLP dataset from14 we attach timestamps for each
collaboration and choose 3,215 authors who published at least 5 papers. Enron
dataset15 contains information of email communication among 16,922 employees in
Enron Corporate from 2001.1.1 to 2002.3.31. The Facebook dataset is used by
Viswanath et al.16, which contains wall-to-wall post relationship among 11,470 users
between 2004-10 and 2009-01.

Important Nodes and Non Important Nodes. On a global level, important nodes
have intrinsically higher strength of impact than others due to the network topology.
Through our study, we have found that a small number of nodes occupy large portion
of network resources. For example, in Supporting Information, 1 we observe that top
20% (ranked by PageRank) nodes occupy about 80% PageRank centrality in DBLP
network. This satisfies Pareto Principle (also known as 80-20 rule)11. To better
understand and model the effects of network evolution on node’s prominence, we
partition nodes into two sets important nodes and non-important nodes. Important
Node: In a network G 5 (V,E) a node v is a important node under centrality

measurement M if and only if ujM uð ÞƒM vð Þf gj j
Vj j §0:8. Non-Important Node: In a

network G 5 (V,E), a node v is a non-important node under centrality measurement

M if and only if ujM uð Þ>M vð Þf gj j
Vj j §0:2. In following sections we denote the set of

important nodes as IN and the set of non-important nodes as NIN.

Evaluation Methods. We employ AUROC and AUPR to evaluate the performance of
the predictions tasks in this work. The information of associated evaluations metrics
are as below:

Figure 4 | Degree Centrality Status vs. Link Influence Event. ‘1’ indicates an important node (high degree centrality), ‘0’ indicates a non important node

(low degree centrality), and ‘X’ indicates that the code is either ‘1’ or ‘0’. We observe similar patterns in four different real-world social networks.

Table 1 | Predict Future Degree Centrality. We solve the future
degree centrality prediction problem (Supporting Information, 3)
using supervised learning method. The five NPP positions (Figure 1)
census contributes to our NPP method for prediction. PA (preferen-
tial attachment) method just includes the degree centrality feature,
and TC (triadic closure) method includes the position 3 as feature.
The method labeled All includes existing centrality measures
(Supporting Information, 3.1). The supervised learning task is to
predict whether a new arriving node will become a important node
or a non important node (determined by its degree centrality, see
Supporting Information, 3.2) in future. The experiment settings are
provided in Supporting Information, 3.2

Datasets

AUROC AUPR

PA TC All NPP PA TC All NPP

Condmat 0.85 0.72 0.85 0.86 0.68 0.42 0.71 0.72
DBLP 0.79 0.83 0.72 0.85 0.27 0.34 0.19 0.36
Enron 0.71 0.55 0.70 0.72 0.43 0.18 0.51 0.52
Facebook 0.81 0.78 0.74 0.81 0.42 0.32 0.42 0.45

www.nature.com/scientificreports
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ROC: The receiver operating characteristic (ROC) represents the performance
trade-off between true positives and false positives at different decision boundary
thresholds26,27.

AUROC: Area under the ROC curve.
Precision-recall Curve: Precision-recall curves are also threshold curves. Each point

corresponds to a different score threshold with a different precision and recall value28.
AUPR: Area under the precision-recall curve.

Prediction Experiment Settings. For the prediction of future degree centrality, we
use Bagging with Logistic Regression as the supervised learning model. Bagging29 is a
machine learning ensemble meta-algorithm designed to improve the stability and
accuracy of machine learning algorithms used in statistical classification and
regression. The bagging method reduces variance and helps to avoid over-fitting,
which is usually applied to many types of machine learning methods. Our goal here is
to evaluate the utility of additional information imputed by us in the feature vector
versus the quality of a learning algorithm. In our experiment we only allow methods
to observe features of nodes in a short duration after nodes joining the network, for
example, for Condmat and DBLP we only use the first year data of new arriving nodes
and for Enron and Facebook we only use the first month data of new arriving nodes.
We classify the nodes in to IN and NIN using degree centrality (Supporting
Information, 3).

In order to demonstrate the generality of our framework, we perform the transfer
learning for the Degree Centrality Prediction problem. Each pair of generalization is
trained on the one dataset and evaluated on another dataset by Bagging with logistic
regression (for example, trained on Condmat and evaluated on DBLP) (Supporting
Information, 4).
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