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Figure 1: Pareto Principle.

1 Data and Problems

1.1 Datasets

In this paper we examine our approaches and perform our analysis on four social networks. The
Condmat network [25] is extracted from a stream of 19,464 multi-agent events representing con-
densed matter physics collaborations from 1995 to 2000. Based on the DBLP dataset from [27] we
attach timestamps for each collaboration and choose 3,215 authors who published at least 5 papers.
Enron dataset [28] contains information of email communication among 16,922 employees in Enron
Corporate from 2001.1.1 to 2002.3.31. The Facebook dataset is used by Viswanath et al. [29],
which contains wall-to-wall post relationship among 11,470 users between 2004.10 and 2009.1.k

1.2 Problem Definition

Network evolution is usually reflected in changes of node’s centrality. First, the social network
evolution impacts the centrality (relative importance in the network) of node; in addition, the node
also affects its local neighbourhood and beyond (via link formation or link dissolution). In order to
give insights into the network dynamics, we provide several definitions and formulate the concrete
problems for the ease of evaluation and comparison.

On a global level, important nodes (high centrality) have intrinsically higher strength of impact
than others due to the network topology. Through our study, we have found that a small number of
nodes occupy large portion of network resources. For example, in Figure 1(b) top 20% (ranked by
PageRank) nodes occupy about 80% PageRank centrality in DBLP network. This satisfies Pareto
Principle (also known as 80-20 rule) [9]. To better understand and model the effects of network
evolution on node’s centrality, we partition nodes into two sets important nodes and non-important
nodes. Based on Pareto Principle, their definitions are given as follows:

Definition 1. Important Node In a network G = (V,E) a node v is a important node under

centrality measurement M if and only if |{u|M(u)≤M(v)}|
|V | ≥ 0.8.

Definition 2. Non-Important Node In a network G = (V,E), a node v is a non-important node

under centrality measurement M if and only if |{u|M(u)>M(v)}|
|V | ≥ 0.2.

In following sections we denote the set of important nodes as IN and the set of non-important
nodes as NIN.

Prediction of centrality can lead us to infer influence, importance and/or success of a given indi-
vidual in a social network. We use the popular degree centrality as a metric in this paper (various
studies have found centrality measures to be correlated). As we postulated, an arguably generic ap-
proach for the network evolution analysis should have the predictability of a node’s degree centrality
in the future. Therefore we formulate a concrete task, the degree centrality prediction problem,
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where we can directly evaluate different approaches and facilitate our findings of the underlying
principles. The associated definitions are as follows:

Definition 3. Time-varying Network The time-varying network at time t is denoted as Gt =
(V,E, TV , TE), where V is the set of nodes and E is the set of links among nodes, TV is the set of
arriving time of all nodes and TE is the time log of all links.

Definition 4. Degree Centrality Prediction In a time-varying network Gt = (V,E, TV , TE) the
degree centrality prediction task is, for the set of nodes Vt = {v|v ∈ V, TV (v) = t, v /∈ INt}, where
INt is the set of important nodes measured in network Gt. How reliably can we infer whether a
node v (v ∈ Vt) will belong to the set of INt+∆T ?

In order to demonstrate the discrimination of different principles, we consider the newly joining
nodes as the prediction instances and ∆T is selected large enough for the node degree centrality
evolution. For example in DBLP we consider nodes that join the collaboration network in recent 2
years and predict whether they will become important after 5 years. In this paper we concentrate
on predicting nodes’ future degree centrality. We use the popular degree centrality as a metric in
this paper, due to the fact that various studies have found centrality measures to be correlated.

These concrete problems provide us quantitative and microscopic views of network evolution,
which also make it convenient for principles comparison. Additionally, we also study whether the
learned predictors can generalize across different domains of social networks for the problem defined
above. This provides us rigorous and empirical views of the network evolution problem.

2 Node Prominence Profile

An important fraction of network dynamics locates in the process of degree centrality evolution.
A generic and effective measurement should be able to infer the degree centrality evolution trend,
and aid in predicting the potential degree centrality of a node in the future. We first introduce the
current state-of-art of centrality measures and discuss their limitations. In addition, we validate
the fundamental principles associated, and introduce our framework - node prominence profile
which optimizes trade-offs between preferential attachment and triadic closure. Finally, based on
experiments we unveil the interactions between node’s degree centrality and its position, which are
well reflected in our framework.

2.1 Current State of The Art

Many centrality measures are proposed for identifying important (high centrality) nodes in a network,
such as degree centrality, Pagerank [5], Betweenness [6], and Closeness [7].

2.1.1 Limitations of Current Methods

Although these methods are proved to be effective in centrality quantification and measurement,
they are inherently lack of predictability. First, most of these measures assign a value to each
node, which leads to the loss of information; second, much research has focused on describing the
centrality and ignore the position of nodes in the network. To summarize, even though these existing
centrality measures are good at evaluating consequences of network evolution, they have limitations
in describing the node’s future degree centrality.

2.1.2 A Case of Local Sub-structure

We posit importance of a node relies on its neighborhood. Thus the future importance of a node
may be a function of the sub-structure surrounding the node at time t. We have several canonical
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Figure 2: Preferential Attachment vs. Triadic Closure. Based on the principle of preferential
attachment two red nodes are most likely to be connected in future; while the triadic closure principle
suggests that link between two blue nodes.

examples to support this proposition. First, based on the PageRank heuristic: centrality of a node
is indicated by the number of connections or links to that node; second, Burt [20] proposed the
concept of structural hole: a node’s success often depends on their access to local bridges. Both of
these examples imply that the position of node within a social network is important. This leads us
to investigate the value of a node’s position within the local sub-structures and the impact on its
future degree centrality, which inspires the development of our framework.

2.2 Preferential Attachment and Triadic Closure

Despite the well known macroscopic scaling in social networks, such as power-law degree centrality
distribution [19], attachment kernel [36] and clustering coefficient as function of node degree central-
ity [19], it is undecided whether there is a common mechanism underlying these macroscopic laws
[32] [33]. With the evidence that the preferential attachment process [19] is just one dimension of
network evolution, much recent research has extended the preferential attachment principle by local
sub-structure evolution rules [38] [39]. Li et al. [39] and Jin et al. [38] proposed that an individual’s
link formation significantly relies on its neighbors. In the work of [31], Granovetter proposed that a
“forbidden” triad (left in Figure 3) is most unlikely to occur in social networks, which means that
the probability of a new link to close “forbidden” triad is higher than the probability of link between
two randomly selected nodes. The principle of triadic closure is demonstrated to be relevant for
social network evolution in many works [32] [38] [39] [44]. Obviously these two principles propose
two distinct mechanisms of network evolution and none of them can act as a single origin of network
evolution. In preferential attachment new links are made preferentially to high degree centrality
nodes while in triadic closure new links are generated to close “forbidden” triad (Figure 2). We are
interested to know whether there is an effective combination of these two principles.

The principles of preferential attachment and triadic closure have been empirically demonstrated
to be relevant (not as a single origin) for macroscopic scaling laws in the work of [37] [41] [42]
[43], expressly or implicitly. As the fact that these principles are underlying the social network
macroscopic scaling laws, we are interested to know whether these principles are valid to answer
the microscopic problems in social network dynamics, such as importance prediction. Our work is
different from the work of [37] and [40], Leskovec et al. [37] employ triadic closure to reproduce the
observed macroscopic laws of social networks and Lou et al. [40] investigated how a reciprocal link
is developed and how relationships develop into triadic closure.

2.2.1 Triadic Closure Effect on Degree Centrality Evolution

The effect of preferential attachment on the degree centrality evolution is obvious and evident. Here
we explore the effect of triadic closure on the degree centrality evolution. The quantity of triadic
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Figure 3: Triadic Closure

(a) Before Evolution (b) After Evolution

Figure 4: Structural Balance Rate

closure (or structural balance) is usually defined as below [38]:

balance rate =
3× number of closed triads

number of connected triads
(1)

where connected triad is the left triad in Figure 3 and closed triad is the right triad in Figure 3 respec-
tively. By studying the sub-networks among important (high degree centrality) or non-important
nodes, we observe that initially the future important nodes sub-network has a lower balance rate than
the future non-important sub network, while after long enough evolution the former sub-network
forms a more balanced structure (Figure 4). There are several implications:

• There exists connections between the triadic closure and the degree centrality evolution. In
addition, as discussed above, new links are more likely to form between nodes located in an
imbalanced sub-network;

• The initial sub-network where future important nodes are located is more imbalanced than
that of future non-important nodes, position of node can be indicative of its future degree
centrality.

To some extent this implies the effect of triadic closure on the degree centrality evolution mechanism.

Evolution Ratio In the process of network evolution, one type of triads is possible to evolve into
another type (Figure 3). For a specific type of triads (i.e., triad 1), we calculate what percentage
of them evolve and denote that as the evolution ratio. A toy example is given in Figure 6. In this
figure we can see after the evolution of network, 2

3 triad 2 sub-structures evolve, and the evolution
ratio of triad 2 in this process is 2

3 .
As suggested in the principle of triadic closure, a “forbidden” triad is more likely to attach new

links. In order to demonstrate that position is important for evolution, we provide the evolution
ratio of two types of triads in Figure 5 (a). We can see that the “forbidden” triad (triad 2) has much
higher probability to form a new link than the disconnected sub-structure triad 1. This implies,
nodes in different triads have different probabilities to develop importance. This leads us to an
important conclusion: the positions of nodes in sub-structures determine their future orbits in both
essential evolution elements for the importance evolution. This observation leads us to develop our
framework called, the Node Prominence Profile.
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(a) (b) (c)

Figure 5: Structural Balance Statistics

Figure 6: Triad Evolution Ratio Toy Example

Significance Validation In Figure 4 we show that initially the future important nodes (IN)
sub-network has a lower balance rate than the future non-important (NIN) sub-network, while
after long enough evolution the former sub-network forms a more balanced structure. In order to
validate the significance of these findings, we design the following experiments. In the network
we have two categories of nodes, IN and NIN (important nodes and non important nodes). Our
purpose is to demonstrate that (i) IN sub-network has a lower balance rate than NIN sub-network
before evolution and that (ii) IN sub-network has a higher balance rate than the NIN sub-network
after evolution. A straightforward way to measure and validate this is to compare the balance rate
differences between IN sub-network and NIN sub-network to the null model where the type of nodes
is randomized (the numbers of IN and NIN do not change, but the type (IN or NIN) is randomly
assigned to nodes). To measure statistical significance of balance rate differences between IN and
NIN, we compare each real network (Condmat, DBLP, Enron, and Facebook) to 10,000 surrogate
networks where the type (IN or NIN) of the nodes was randomly shuffled, leaving the topology of
the network intact.

For example, in Condmat network the balance rate difference between IN and NIN is Dreal =
0.230 before evolution. In each round of simulation, we first randomly assign the type of nodes and
then we calculate the balance rates of new IN sub-network and NIN sub-network. Trivially we have
a simulated balance rate difference Dsim. After 10,000 round of simulations, statistical significance
of balance rate difference is measured by the Z score:

Z =
Dreal −Dsim

std(Dsim)

The Z scores for four real-world networks before and after evolution are provided in Table 1 and
Table 2 correspondingly. In Table 1 and Table 2 we present Z-scores with four different thresholds
(i.e., 10%, 20%, 30%, and 50%). As we have observed in Figure 4, the balance rate of IN sub-
network is smaller than that of NIN sub-network. Thus, the balance rate difference between IN
and NIN Dreal < 0. Clearly, most balance rate differences between IN and NIN are significantly
under-represented (marked by blue color). This means our observation that balance rate of IN
sub-network is smaller than that of NIN sub-network is statistically significant, even if we set the
threshold to 50%. The only exception is, in Enron network where we set the threshold as 50%,
the balance rate of IN sub-network is not substantially smaller (Z = −0.298). Additionally the
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significance levels of other thresholds (10%, 20%, and 30%) in Enron are lower than other networks
(approximately 2 sigmas). This indicates that the triadic closure effect is not that significant in
Enron network, which well explains why Triadic Closure based method has much worse performance
in Enron (see Table 7, method TC).

Similarly we also provide the significance validation for the network after evolution. The real
balance rate difference Dreal > 0. If we observe that the real balance rate is significantly larger
than the random cases, we can claim that the balance rate of IN sub-network is significantly larger
than that of NIN sub-network. In Table 2 we can observe that in most cases the observation that
IN sub-network is more balanced than the NIN sub-network is significant. In Table 2 when we set
the threshold to 50% in Condmat, the observation is less substantial (Z = 1.659). Additionally in
Enron when we set the threshold to 30% and 50%, the observation is also not significant. This further
confirms that the triadic closure effect is not comparably significant in Enron network. Although in
some cases the observation is not substantial, our experiments already provide enough evidence that
triadic closure has effects on the degree centrality evolution. Initially future important nodes are
located in a more imbalanced sub-network than that of future non-important nodes, and the sub-
network of important nodes evolves to be more balanced or comparably balanced than non-important
nodes.

Table 1: Significance Validation of Social Balance Rates Before Evolution. Red color indicates the
significance level is less than 2 sigmas (H0 rejected at 2 sigmas).

Z-scoresNodes Partition

Percentile Condmat DBLP Enron Facebook

10% -6.696 -4.913 -2.884 -6.171

20% -6.023 -2.096 -2.501 -11.253

30% -7.955 -4.220 -1.972 -10.568

50% -4.053 -9.859 -0.298 -2.744

Table 2: Significance Validation of Social Balance Rates After Evolution. Red color indicates the
significance level is less than 2 sigmas (H0 rejected at 2 sigmas).

Z-scoresNodes Partition

Percentile Condmat DBLP Enron Facebook

10% 3.697 7.133 3.705 14.626

20% 3.515 5.682 4.400 12.241

30% 4.708 9.875 1.794 3.063

50% 1.659 4.093 -0.578 2.139

2.3 Node Prominence Profile

Motivated by the above analysis, we start our investigations from the principle of triadic closure.
Based upon the principle of triadic closure, an individual will try to close a “forbidden” triad that it
has, for example in Figure 3 a “forbidden” triad is likely to evolve as a closed triad. See examples of
all possible triads in Figure 7(a) and Figure 7(b). The number labeled on the edge describes whether
two nodes have relation, for instance ‘1’ can state that two actors are friends while ‘0’ means they
are non-friends.
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(a) (b) (c)

Figure 7: Triads and User Influential Probability.

Figure 8: Node Prominence Profile

Such kind of triad evolution has very nice characteristics, firstly it leads to the formation of the
link, and additionally it also increases the degree centrality of node. Thus, different positions of a
node in corresponding triads can be indicative of degree centrality. This satisfies our proposition that
the prominence of a node not only includes its centrality but also its position in local neighborhood.
As we have discussed above, the position of node within substructures could provide us insights
into the principles underlying the network evolution. To that end, in Figure 8 we enumerate all
possible five positions in the triad sub-structures for further study. We are interested to know that
the consequences of preferential attachment and triad closure on the network evolution; second, we
want to validate our proposition made in the above section and seek a solution which optimizes
trade-offs between two distinct principles.

Based on our discussions above, we introduce our framework-Node Prominence Profile for the
degree centrality evolution analysis. Formally, the Node Prominence Profile is defined as follows:

Definition 5. Node Prominence Profile Node Prominence Profile for a node v, written as
NPP(v), is a vector describing the occurrence frequencies of node v in five different positions in
three isomorphic substructures.

In order to analyze the generality and effectiveness of existing centrality measures and our
method, we design an experiment to identify their correlation with node latent degree centrality.
The evidence that our framework combining two principles well will be provided later.

An Example of Node Prominence Profile In Figure 8, there are three sub-structures and five
automorphism positions. To compute the node prominence profile for an individual node v, we need
to find out all these sub-structures where node v is located. Then we count how many times node
v occurs in each automorphism position.

An example is given in Figure 9. In Figure 9, there is a network with five nodes and five edges;
and in total there are 6 sub-structures described in the definition of Node Prominence Profile (Triad
1, Triad 2, and Triad 3 in Figure 8). Among these six sub-structures, node s is located in different
positions. For example, node s is in position 1 for twice and in position 2 for zero times. In
this way, after finding out all associated sub-structures, we just count how many times node s has
shown up in each position. And finally, we can calculate the node prominence profile of node s as
NPP (s) = (2, 0, 1, 2, 1).
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Figure 9: Toy Example of Node Prominence Profile. To compute the node prominence profile for an
individual node v, we need to find out all these sub-structures where node v is located. And then
we count how many times node v occur in each automorphism position. In this figure, we calculate
the node prominence profile of node s in a sample network (five nodes and five edges). Node s never
show up in position 2 in triad 1, thus the corresponding value of position 2 in node prominence
profile is zero.

Experimental Setup for Significance Validation For a time-varying network at time t Gt,
we extract the set of nodes whose arriving time is t and then compute their centrality measures
based on the topology of Gt. At time t + ∆T for the network Gt+∆T we classify the set of nodes
into important (high degree centrality) set INt+∆T and non-important (low degree centrality) set
NINt+∆T based on the topology of Gt+∆T . In order to demonstrate the discrimination of two
principles, ∆T is selected large enough for the node degree centrality evolution. As we know when
∆T is small, the degree centrality prediction problem will be easy. Here we extract new arriving
nodes as our prediction candidates, because existing nodes are well evolved and much easier to
predict. In this way for each new arriving node we have its centrality measures and triad position
counts measured at time t, and also we have its corresponding degree centrality at time t + ∆T .
We employ Wald test [45] to evaluate the relationship between each feature (centrality measures
or NPP position counts measured at time t) and corresponding future degree centrality (measured
at time t + ∆T ). Thus, we can compare the correlations between these metrics and node’s latent
degree centrality quantitatively, and we show the p-value associated with each feature and their
corresponding significance level in Table 3. These data are presented in terms of histogram (See
main text Figure 2 (c)).

We observe (see Table 3) that the centrality measures are not performing well in describing a
node’s future degree centrality except degree centrality and betweenness centrality (1 star significance
level, see Table 3), while several positions are significantly better in describing a node’s latent degree
centrality. For the user influential probability measure [21], the historic information of centrality does
not give a promising indication of IN and NIN. In the experiment the sets of INt+∆T and NINt+∆T

are labeled by the degree centrality, however we notice that degree centrality metric does not have
a very significant correlation with node’s future degree centrality. This implies that the preferential
attachment is not the only dimension in the social network evolution as stated in [37] [38] [39]. While
for the different positions, we have several observations: 1) we unfold that different positions have
different ability in describing node’s future degree centrality; 2) three of them are much better than
centrality measures. To summarize, even though these state-of-the-art centrality measures are
proved to be good at centrality quantification, they are inherently not powerful enough to depict the
node’s future degree centrality. Because the preferential attachment is not the only origin underlying
the social network evolution. Additionally we can observe that positions in triad structures combines
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Table 3: Significance of Features
Features p-value significance level

Degree Centrality 0.0583 *
Clustering Coefficient 0.5053
Closeness Centrality 0.7936
Betweenness Centrality 0.0937 *
PageRank 0.1423
User Influential Probability 0.2209
NPP Position 1 0.7388
NPP Position 2 0.0385 **
NPP Position 3 1.059e−3 ***
NPP Position 4 1.55e−4 ****
NPP Position 5 0.31080

*: p < 0.1; **: p < 0.05; ***: p < 0.01, ****: p < 0.001.

two principles. Triad position 1 and 4 reflect the effect of preferential attachment, while triad position
3 follows the triadic closure principle. This confirms our propositions made above and provides a
possible way to balance the effects between preferential attachment and triadic closure.

As triadic closure principle suggests, for the unclosed triad (triad 2) new links are formed between
nodes in position 3, however we have observed that nodes in position 4 is more likely to be important
in future. One possible reason underlying such phenomenon is the preferential attachment principle,
nodes in position 4 have higher attractiveness of links. However in Table 3 we observe that degree
centrality does not have a comparable significance as the position 4, this suggests that the preferential
attachment principle is not the only mechanism underlying this.

To further study this effect, we calculated the conditional probability of position 3 and position
4, Prob(3|4) states the probability that a node shows up in position 3 given the condition that it
is located in position 4; Prob(4|3) is the probability that a node is located in position 4 given the
condition that it is also in position 3. We can see in Figure 5(c) that nodes in position 4 have
extremely high probability to be located in position 3 (close to 1.0), while nodes in position 3 have
less than 0.3 probability to occur in position 4. This means, nodes in position 4 are affected by
both mechanisms of preferential attachment and triadic closure, while nodes in position 3 are mainly
influenced by the triadic closure principle. This explains why position 4 has higher significance level
than position 3, and further confirms that the triadic closure principle is more significant than the
preferential attachment in social networks evolution. Also this implies an important characteristic
of the NPP method, the node prominence profile combines two well know social principles (i.e.
preferential attachment and triadic closure).

2.4 Prominence: Centrality and Position

In order to demonstrate that prominence is not only represented in the node’s centrality (typically
measured by centrality metrics) but also in the node’s position in local structure, we provide a
detailed investigation into their interaction from the perspective of influence events and provide the
evidence that the NPP is able to modeling both centrality and position information. In order to
validate their connections, we define link influence between two nodes u and v.

Definition 6. For a given node u in the time-varying network G = (V,E, TV , TE), u is said to have
a link action on node w at time t if (u,w) ∈ E and t ∈ TE(u,w). TV is the log of nodes joining
timestamps, while TE is the log of edge formation timestamps.

Additionally we provide the definition of the link influence of node u on its neighbor v as follows:
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Table 4: Degree Centrality Status vs. Link Influence Event
Patterns 1XX 0XX X1X X0X XX1 XX0 11X 00X 10X 01X

Condmat 1530 365 1513 382 95 1800 1316 168 214 197
DBLP 1377 438 1329 486 15 1800 681 498 369 267
Enron 11769 249 11787 231 187 11831 11549 11 220 238

Facebook 6203 2775 6196 2782 10 8977 4794 1373 1409 1402

Definition 7. A node u is said to have a link influence on its neighbor v iff: 1) there is a link
action of node u with another node w at time t; 2) there exists a link action of node v with node w
at time t′; 3) min(TE(u, v)) < t < t′ and t′ − t < σ

The σ is the average action delay between two nodes u and v. An example of link influence is
presented in Figure 10 (left).

Figure 10: Link Influence Events

We divide the nodes into two groups (important nodes and non important nodes). In this section,
we further study the connection between the node’s centrality and its position. In Figure 10, we
partition the link influence event into 8 categories based on nodes’ prominence. The three digits
represent the degree centrality status of the three nodes, u, v, and w, ‘1’ indicates important node
and ‘0’ indicates non important node. In Table 4 we provide the distribution of several patterns,
and we observe that: 1) |1XX| > |0XX| and |X1X| > |X0X|, this means important nodes have
much higher probability to have link influence on their neighbors, and it also validates the principle
of preferential attachment; 2) additionally |XX0| > |XX1|, non-important nodes play an important
role to transfer link influence; 3) |11X| > |00X|, this states that link influence is more likely to
happen between important nodes; 4) |10X| ≈ |01X|, if link influence occurs among important nodes
and non-important nodes, then important nodes and non-important nodes have the same chance to
initiate the influence. This also validates the interactions between the centrality and position (link
formation leads to the change of node’s position).

Significance Validation Here we validate the significance of our findings in Table 4. In Table 4 we
observed that (i) |1XX| > |0XX| and |X1X| > |X0X|; (ii) |XX0| > |XX1|; (iii) |11X| > |00X|;
and (iv) |10X| ≈ |01X|. In order to validate the significance of these findings, we design the
following experiments. In order to demonstrate that these observations can not be explained by
degree centrality of nodes alone, we compare the differences (for example, |1XX| − |0XX|, or
|XX0| − |XX1|) to the null model where the degree centrality sequence of network is preserved.
The null hypothesis here is that the observed differences in numbers of link influence events can be
explained by the degree centrality of the nodes alone, without taking their position in a triad into
consideration. To measure statistical significance of these findings, we compare each real network
(Condmat, DBLP, Enron, and Facebook) to 10,000 surrogate networks where the degree centrality
sequence is preserved and links are placed completely randomly.

In each round of simulation, we generate a random graph G′. In the original network G, the
nodes set is denoted as V = {v1, v2, ..., vn}, which has a corresponding degree centrality sequence
d = {d1, d2, ..., dn}. Realize a random graph G′ from the degree centrality sequence d by using
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Table 5: Significance Validation of Link Influence Event By Comparing to Random
Graphs with the Same Degree Centrality Sequence (Z-score). Red color indicates the
significance level is less than 2 sigmas. (H0 rejected at 2 sigmas)

Validation |1XX| − |0XX| |X1X| − |X0X| |XX0| − |XX1| |11X| − |00X| |10X| − |01X|
Condmat 7.922 4.937 10.562 7.931 0.975

DBLP 2.350 1.963 4.505 2.023 1.857
Enron 4.258 4.897 4.486 4.583 1.079

Facebook 4.881 4.132 7.691 4.689 1.100

Havel-Hakimi algorithm [47] (in the process of Havel-Hakimi algorithm, we randomly select node in
each step). And 8 types of influence events are recalculated from the simulated graph G′.

Here we give an example to show how the validation is performed. For example, in Condmat
|1XX| − |0XX| = 1175, in order to validate that |1XX| > |0XX| is significant, in each round
of simulation, we realize a random graph G′ with the same degree centrality sequence as the real
network and recalculate the numbers of |1XX| and |0XX| in the simulated network G′. Trivially
we have a simulated difference between |1XX| and |0XX|, denoted as Dsim. After 10,000 round of
simulations, statistical significance of the difference between |1XX| and |0XX| is measured by the
Z score:

Z =
Dreal −Dsim

std(Dsim)

Clearly in Table 5 we observe that |1XX| is significantly larger than 0XX in four real-world
networks (Z >= 2.350, H0 rejected). Similarly we also validate that |X1X| > |X0X| and |11X| >
|00X| significantly comparing to null model. The observation that |XX0| > |XX1| is significant in
four real-world networks (more than 2 sigmas). Finally we also identify that the difference between
|10X| and |01X| is not significant in all four real-world networks (less than 2 sigma). This confirms
that the difference between |10X| and |01X| is not substantially large. This experiment provides
significant evidence for our conclusions in the above section, and demonstrates that our observations
can not be explained by the graph’s degree centrality sequence alone.

3 Inferring Future Degree Centrality

In order to prove the correctness of our framework, we apply our approach in degree centrality
prediction problem and compare with baseline methods. Note that we classified nodes as IN or
NIN, thus making it a binary classification task. We first discuss the feature vector construction
aspect.

3.1 Feature Vector Engineering

We first integrate the various measures capturing the notion of centrality in to one feature vector.
In addition to the different measures described in Table 3 (other than five positions), we also include
some measures introduced in Burt’s work of [20], such as efficiency, constraint and hierarchy. These
features contribute to the feature vector for the All method.

The five TPP positions census contributes to our NPP method for prediction. The features for
All method, NPP , PA and TC are listed in Table 6. For all methods, we use Bagging with Logistic
Regression as the supervised learning model. Our goal here is to evaluate the utility of additional
information imputed by us in the feature vector versus the quality of a learning algorithm.
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Table 6: Features List
Features All NPP PA TC

Degree Centrality
√ √

Betweenness
√

Closeness
√

Clustering Coef.
√

PageRank
√

Efficiency
√

Hierarchy
√

Constraint
√

Position 1
√

Position 2
√

Position 3
√ √

Position 4
√

Position 5
√

3.2 Experimental Settings

In our experiment we only allow methods to observe features of nodes in a short duration after nodes
arriving, for example, for Condmat and DBLP we only use the first year data of new arriving nodes
and for Enron and Facebook we only use the first month data of new arriving nodes. We classify
the nodes in to IN and NIN using degree centrality.

3.3 Degree Centrality Prediction

3.3.1 Classification Performance

Table 7: Predict Future Degree Centrality. We solve the future degree centrality prediction prob-
lem using supervised learning method. The five NPP positions (Figure 8) census contributes to
our NPP method for prediction. PA (preferential attachment) method just includes the degree
centrality feature, and TC (triadic closure) method includes the position 3 census of nodes. All
method includes existing centrality measures listed in SI. The supervised learning task is to predict
whether a new arriving node will become a important node or a non important node (determined by
its degree centrality, see SI) in future. All+ method includes one more feature, Kn,n, the average
nearest neighbor degree centrality. The experiment settings are provided in SI.

AUC AUPR
Datasets PA TC All All+ Kn,n NPP PA TC All All+ Kn,n NPP
Condmat 0.85 0.72 0.85 0.76 0.71 0.86 0.68 0.42 0.71 0.37 0.31 0.72

DBLP 0.79 0.83 0.72 0.74 0.73 0.85 0.27 0.34 0.19 0.36 0.33 0.36
Enron 0.71 0.55 0.70 0.51 0.52 0.72 0.43 0.18 0.51 0.17 0.15 0.52

Facebook 0.81 0.78 0.74 0.56 0.74 0.81 0.42 0.32 0.42 0.40 0.08 0.45

In Table 7, we provide an empirical comparison of learning performance. In our observation
our approach NPP outperforms the three baseline methods in terms of AUPR, and has better or
comparable performance in terms of AUC. We have several conclusions: 1) the principle pref-
erential attachment is just one dimension of mechanisms underlying the nodal degree centrality
evolution; 2) the trade-offs between triadic closure and preferential attachment are well balanced in
node prominence profile and then it achieves better performance in the prediction task.

Besides we also validate the performance of Kn,n—the average nearest neighbor degree centrality.
In Table 7 we can observe that althoughKn,n has comparable performance as node prominence profile
in DBLP dataset, it does not perform consistently well in other datasets. For example, in Facebook,
Kn,n has much worse performance than others. In all four datasets, our method node prominence
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profile has better or comparable performance than All+ method (Kn,n is included in the feature
vector).

3.3.2 Degree Centrality Prediction Performance

(a) Condmat (b) DBLP

(c) Enron (d) Facebook

Figure 11: Degree Centrality Prediction Performance. Comparing the measured degree centrality
(log scale) with the predicted degree centrality (log scale) in four real-world networks. In each sub-
figure, the left side is the performance of All model and the right side is the performance of NPP
model. The black concentric circles represent the average predicted values in each data bin. For
each data bin we also provide the boxplot of the corresponding predicted values. The performance is
measure by the Pearson Correlation Coefficient (PCC). Higher PCC value indicates more accurate
prediction of future degree centrality.

Table 8: Predict Degree Centrality. Besides comparing NPP method with All method, we also
compare our NPP method with other five state-of-art methods and All+ (including one more
feature than All method, kn,n) method in terms of Pearson Correlation Coefficient (PCC).

Pearson Correlation Coefficient
Datasets Betweenness Clustering

coef.
Degree Cen-
trality

PageRank Closeness Kn,n All All+ NPP

Condmat 0.073 0.378 0.509 0.426 0.162 0.217 0.533 0.609 0.702
DBLP 0.216 0.251 0.422 0.113 0.139 0.332 0.600 0.619 0.680
Enron 0.308 0.383 0.372 0.228 0.036 0.015 0.391 0.320 0.457

Facebook 0.391 0.352 0.561 0.256 0.269 0.285 0.593 0.578 0.642

Besides predicting whether new arriving nodes become IN or NIN in future (classification pre-
diction), our model is also able to predict future degree centrality of these new arriving nodes. The
experimental settings and feature vectors for All model and NPP model are the same as the classi-
fication prediction task (in Section 3.3.1). The only difference is, we employ Bagging with Random
Subspace as the supervised learning model for the degree centrality prediction task.

In Figure 11 we provide the performance of All method and NPP method in predicting nodes’
future degree centrality. The performance of degree prediction is measured by the Pearson Cor-
relation Coefficient (PCC), higher correlation coefficient indicates better performance. In all four
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(a) Condmat (b) DBLP (c) Enron (d) Facebook

Figure 12: Degree Centrality Prediction Performance of All+ (including kn,n in feature vector).
Comparing the measured degree centrality (log scale) with the predicted degree centrality (log scale)
in four real-world networks. The performance is measure by the Pearson Correlation Coefficient
(PCC). Higher PCC value indicates more accurate prediction of future degree centrality.

real-world network, NPP method outperforms All method. The improvement of NPP method
over All method ranges from 8.26% to 26.94%. Additionally we also compare our method with five
state-of-art measures (betweenness, degree centrality, clustering coefficient, pagerank, and closeness),
results in Table 8 demonstrate that our method NPP has the best performance in four real-world
networks. The performance of NPP method in predicting future degree centrality provides more
evidence for our conclusions made above. Our methodology (NPP) is validated to optimize trade-
offs between essential dimensions of network evolution (preferential attachment and triadic closure),
and yields accurate and generic performance in predicting node’s future degree centrality (either
classification task or regression task).

Similar to the above section, we also provide the performance of Kn,n—the average nearest neigh-
bor degree centrality. In Table 8 we can observe that although Kn,n has promising performance in
DBLP dataset (PCC = 0.332), it does not perform consistently well in other datasets. Additionally
including Kn,n into the All method does not necessarily improve the performance of prediction. For
example, in Enron and Facebook All+ method has worse performance than the All method. In
all four datasets, our method node prominence profile has better performance than Kn,n and All+
method (Kn,n is included in the feature vector). Different from the binary degree centrality status
prediction task, predicting future degree centrality uncovers the differences between methods in a
more detailed way.

4 Generalization across Datasets: A case for transfer learn-
ing

In the above sections we have demonstrated that the node prominence profile has a stronger gener-
alization capacity than nodal attributes based methods in predicting future important (with high
degree centrality) nodes. To be rigorous, we now ask: are these features powerful enough to trans-
fer learning from one social network to another? If our framework are able to generalize across
datasets, then it will further demonstrate that our framework captures the essential principles of
network evolution.

4.1 Generalization-the Degree Centrality Prediction

We first consider the degree centrality prediction problem. In Figure 13, we provide the transferred
learning results for All model and NPP model. Each pair of generalization is trained on the row
dataset and evaluated on the column dataset by Bagging with logistic regression. The diagonal
entries represent the performance of models which are trained and tested on the same dataset,
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(a) NPP (b) All

Figure 13: Generalization Measured in AUPR (Prominence Prediction). Different from the learning
task performed in single dataset, the training set is extract from one dataset and the prediction
(testing set) is made on another dataset. AUPR, area under precision-recall curve. The AUPR
score is more sensitive than AUROC in reflecting the difference of prediction [18]. In order to
demonstrate stability of generalization, we use AUPR for the performance evaluation. The detail
of NPP and All methods can be found in Supporting Information, 4. Each element represents
the performance reduction compared with the regular learning results (i.e., training and testing on
the same dataset). The diagonal entries represent the performance of models which are trained and
tested on the same dataset, which makes it convenient for comparisons. We can observe that the
performance reductions of NPP method are mostly less than 20%, while the performance reduction
of All method can achieve about 60%.

which makes it convenient for comparisons.
There are several observations. We observe that the NPP method’s performance degrades

remarkably less than the All method in most cases. This indicates that the prominence profile of
node captures principles that are more generic than the centrality based model, and this still holds
even if the generalization is across different domains of networks. This further confirms that the
prominence profile is a general cross-domain property for the degree centrality evolution analysis.
In conclusion, the prominence profile is notably more generic across different domains of networks,
and the centrality based method is more particular to a specific dataset.

In conclusion based on the generalization of the degree centrality prediction problem across
datasets, we postulate that the positions where nodes are located are more important in determining
their evolution orbits than the nodal attributes possessed by them. Our methodology of prominence
profile has a greater degree of precision than has heretofore been possible in depicting the network
evolution. This is due to the optimized trade-offs between triadic closure and preferential attachment
in our node prominence profile methodology.
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