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Why Graphs?
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Graphs in Society

Social & Office Graph

Internet

Knowledge Graph

Transportation
figure credit: Web

Academic Graph

Electrical Grid Network
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Graphs in Nature

Human Disease Networks Protein-Protein InteractionsFood Web

Biological Neural Networks Brain Networks

figure credit: Web

Molecules
Graphs are widely used for

abstracting complex systems of
interacting objects!
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Leonhard Euler 
(1707--1783)

Seven Bridges of Königsberg (1736)

Can we design a routine to walk through 
each bridge once and only once?

When Did the Mind of Graphs Start?

Image Credit: https://en.wikipedia.org/wiki/Leonhard_Euler 6



James J Sylvester
(1814--1897)

The term “graph” (1878)
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This is a graph!

G = (V, E), where V is the node set 
and E denotes the edge set.

• 𝑉: 𝑣!, 𝑣", 𝑣#, 𝑣$, 𝑣%, 𝑣&, 𝑣'
• 𝐸: 𝑒!", 𝑒!#, 𝑒"#, 𝑒#$, 𝑒$%, 𝑒$&, 𝑒%', 𝑒&'
• 𝐸 ⊆ 𝑉×𝑉

• #nodes: n = 𝑉 = 7
• The order of the graph G

• #edges: m = 𝐸 = 8
• The size of the graph G

When Did the Term “graph” Start?

Image Credit: https://en.wikipedia.org/wiki/James_Joseph_Sylvester
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The graph G can be 
represented as a matrix!

The term “matrix” (1850)



1930s o Sociogram [Moreno]

o Homophily [Lazarsfeld & Merton]
o Balance Theory [Heider et al.]o Random Graph [Erdos, Renyi, Gilbert]

o Degree Sequence [Tuttle, Havel, Hakami]

1950s

1960s

1970s

o Small Worlds [Migram]

o The Strength Of Weak Tie [Granovetter]

1992 o Structural Hole [Burt]
o Dunbar’s Number [Dunbar]

o Small Worlds [Watts & Strogatz]
o Scale Free [Barabasi & Albert]
o Power Law [Faloutsos × 3]

o HITS [Kleinberg]
o PageRank [Page & Brin]
o Hyperlink Vector Voting [Li]

1997

1998/9

2000~2004o Influence Max’n [Domingos & Kempe et al.]
o Community Detection [Girvan & Newman]
o Network Motifs [Milo et al.]
o Link Prediction [Liben-Nowell & Kleinberg]

o Graph Evolution [Leskovec et al.] 
o 3 Deg. Of Influence [Christakis & Fowler]
o Social Influence Analysis [Tang et al.]
o Six Deg. Of Separation [Leskovec & Horvitz]
o Network Heterogeneity [Sun & Han]
o Network Embedding [Tang & Liu]
o Computer Social Science [Lazer et al.]

o Info. vs. Social Networks (Twitter) [Kwak et al.]
o Signed Networks [Leskovec et al.]
o Semantic Social Networks [Tang et al.]
o Four Deg. Of Separation [Backstrom et al.]
o Structural Diversity [Ugander et al.]
o Computational Social Science [Watts]

2005~2009

2010~2013

2014~2021

o Deep Representation Learning for Graphs
o Network Embedding [Perozzi et al.]
o Graph Convolutional Networks [Kips & Welling]

Graph & Network Research

1996-2000
CS & Physics

The 20th Century:
Sociology &

Anthropology

2000-2013
More CS & ML

on Graphs

The past 10 years:
Deep/Representation 
Learning on Graphs
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𝑓( ) 𝑓( )

Graph Machine Learning

Machine Learning on
Data

Machine Learning on
Graphs

10figure credit: Jure Leskovec



Graph Machine Learning

node

link

(sub-)graph
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𝑥!

𝑥"

𝑥!

𝑥"

𝑦

𝑥

classification regression clustering



hand-crafted feature matrix

feature engineering

Before Deep Learning …

X

𝑥!": node 𝑣! ’s 𝑗#$ feature, e.g., 𝑣! ’s pagerank value

machine learning models

Graph & Network applications
• Node classification
• Link prediction
• Community detection
• Anomaly detection
• Social influence
• Graph evolution
• … … 

12



Before Deep Learning …

• Given two nodes 𝑣, and 𝑣- that are not connected right now, we aim to 
infer whether a link will form between them.
– Friend recommendation, e.g., “People you may know” on LinkedIn or Facebook, 

“Who to follow” on Twitter
– Item recommendation, e.g., movies to watch in Netflix, books to buy in Amazon

i j i j

t t+1
13



Before Deep Learning …

• The number of common neighbors between two nodes
• 𝑆,- = |𝑁 𝑣, ∩ 𝑁(𝑣-)|, where 𝑁 𝑣, represents the neighbors of 𝑣,.

i ji j
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Before Deep Learning …

• The intersection of two’s neighbors over the union of their neighbors

• 𝑆,- =
|/ 0$ ∩/(0%)|
|/ 0$ ∪/(0%)|

, where 𝑁 𝑣, represents the neighbors of 𝑣,.

i jji
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Before Deep Learning …

• Adamic Adar

• 𝑆,- = ∑0&∈/ 0$ ∩/(0%)
6

789 / 0$

i j i j

Adamic and Glance. The political blogosphere and the 2004 U.S. election: divided they blog. In LinkKDD 2005
16



Before Deep Learning …

jiji
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Before Deep Learning …

P2 ( |      )P1 ( |      )i j i j

jiji
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Structural Diversity



Before Deep Learning …

more diverse less diverse

19

Structural Diversity



Before Deep Learning …

more diverse less diverse

20

Structural Diversity
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Before Deep Learning …

Four

Three

Two

One

Five

Six

More
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P2 ( |      )P1 ( |      ) <

less & less diverse

P2 ( |      )P1 ( |      ) >

Before Deep Learning …

i j i j

i ji j

Structural Diversity and Homophily: A Study Across More Than One Hundred Big Networks. In KDD’17



hand-crafted feature matrix

feature engineering

Before Deep Learning …

X

𝑥!": node 𝑣! ’s 𝑗#$ feature, e.g., 𝑣! ’s pagerank value

machine learning models

Graph & Network applications
• Node classification
• Link prediction
• Community detection
• Anomaly detection
• Social influence
• Graph evolution
• … … 

23



hand-crafted latent feature matrix

Graph Representation Learning

Z

• Input: a network 𝐺 = (𝑉, 𝐸)
• Output: 𝒁 ∈ 𝑅 ( ×* , 𝑘 ≪ |𝑉|, 𝑘-dim vector 𝒁+ for each node v.

Graph & Network applications
• Node classification
• Link prediction
• Community detection
• Anomaly detection
• Social influence
• Graph evolution
• … … 

24

feature engineering learning



Graph Representation Learning: An Example

figure: metapath2vec 25

• Input: a graph 𝐺 = (𝑉, 𝐸)
• Output: 𝒁 ∈ 𝑅 ( ×* , 𝑘 ≪ |𝑉|, 𝑘-dim vector 𝒁+ for each node v.

0KDD
0
0
0
0
1
0
0
0
0
0
0

ACL

MIT
CMU

a1

a2

a3

a4

a5

p1

p2

p3

input layer hidden 
layer

output layer

prob. that 
ACL appears

prob. that 
KDD appears

prob. that 
a3 appears

prob. that 
a5 appears

prob. that 
CMU appears

prob. that 
p3 appears|V|-dim

|Vp| x kP

prob. that 
p2 appears

|Vo| x ko

|VA| x kA

|VV| x kV



Graph Representation Learning: An Example

figure: metapath2vec 26

• Input: a graph 𝐺 = (𝑉, 𝐸)
• Output: 𝒁 ∈ 𝑅 ( ×* , 𝑘 ≪ |𝑉|, 𝑘-dim vector 𝒁+ for each node v.

0KDD
0
0
0
0
1
0
0
0
0
0
0
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MIT
CMU

a1
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prob. that 
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prob. that 
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prob. that 
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prob. that 
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|Vp| x kP

prob. that 
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How to Encode Graph Structures?

28

“Graph, a structure made of vertices and edges”

VS.



• Input: a text corpus 𝐷 = {𝑊}
• Output: 𝑿 ∈ 𝑅 ? ×@, 𝑑 ≪ |𝑊|, 𝑑-dim vector 𝑿A for each word w.

• Bengio, et al. Representation learning: A review and new perspectives. In IEEE TPAMI 2013.
• Mikolov, et al. Efficient estimation of word representations in vector space. In ICLR 2013.

sentences

𝑤!

𝑤!"#
𝑤!"$

𝑤!%$
𝑤!%#

Word embedding models 

o Computational lens on big social 
and information networks. 

o The connections between 
individuals form the structural …

o In a network sense, individuals 
matters in the ways in which ...

o Accordingly, this thesis develops 
computational models to 
investigating the ways that ... 

o We study two fundamental and 
interconnected directions: user 
demographics and network 
diversity

o ... ... 

Word Embeddings in NLP

latent feature matrix

X

29



word2vec [Mikolov, 2013]

Word Embeddings in NLP

30

• Basic assumption: geographically close words---a word and its context words---in a 
sentence or document exhibit interrelations in human natural language.

• Key idea: try to predict the words that surrounding each one. 



Network Embedding

Feature learning

sentences

𝑤!

𝑤!"#
𝑤!"$

𝑤!%$
𝑤!%#

skip-gram 

o Computational lens on big social 
and information networks. 

o The connections between 
individuals form the structural …

o In a network sense, individuals 
matters in the ways in which ...

o Accordingly, this thesis develops 
computational models to 
investigating the ways that ... 

latent feature matrix

• Input: a network 𝐺 = (𝑉, 𝐸)
• Output: 𝑿 ∈ 𝑅 ( ×* , 𝑘 ≪ |𝑉|, 𝑘-dim vector 𝑿+ for each node 𝑣.

31



hand-crafted latent feature matrix

Feature engineering learning

sentences

𝑤!

𝑤!"#
𝑤!"$

𝑤!%$
𝑤!%#

skip-gram 

o Computational lens 
on big social and 
information 
networks.

o … … 

a b c
d e f

g h

• Input: a network 𝐺 = (𝑉, 𝐸)
• Output: 𝑿 ∈ 𝑅 ( ×* , 𝑘 ≪ |𝑉|, 𝑘-dim vector 𝑿+ for each node 𝑣.

32

Network Embedding



Network Embedding: DeepWalk & node2vec

Feature learning

sentences node-paths

𝑤!

𝑤!"#
𝑤!"$

𝑤!%$
𝑤!%#

skip-gram hand-crafted latent feature matrix

v1 v2v3 v5v3
v1 v3v2 v5
v1 v5v3 v3
v1 v1v2 v3 v4

v4

v3

• Perozzi et al. DeepWalk: Online learning of social representations. In KDD’ 14, pp. 701–710.
• Grover and Leskovec. node2vec: Scalable Feature Learning for Networks. in KDD ’16, pp. 855—864.  

• Input: a network 𝐺 = (𝑉, 𝐸)
• Output: 𝑿 ∈ 𝑅 ( ×* , 𝑘 ≪ |𝑉|, 𝑘-dim vector 𝑿+ for each node 𝑣.

33



Network Embedding: Random Walk + Skip Gram

Image Credit: Perozzi et al. DeepWalk: Online learning of social representations. In KDD’ 14, pp. 701–710.
34

𝑣!

𝑣!"#
𝑣!"$

𝑣!%$
𝑣!%#

random walk skip-gram



𝑣!

𝑣!"#
𝑣!"$

𝑣!%$
𝑣!%#

Network Embedding: Random Walk + Skip Gram

Random Walk Strategies:
o DeepWalk (walk length > 1)
o LINE          (walk length = 1)
o PTE (walk length = 1)
o node2vec (biased random walk)

1. Perozzi et al. DeepWalk: Online learning of social representations. In KDD’ 14. Most Cited Paper in KDD’14.
2. Tang et al. LINE: Large scale information network embedding. In WWW’15. Most  Cited Paper in WWW’15. 
3. Grover and Leskovec. node2vec: Scalable feature learning for networks. In KDD’16. 2nd Most Cited Paper in KDD’16.

random walk skip-gram



log(
#(𝒘, 𝒄)|𝒟|
𝑏#(𝑤)#(𝑐)

)
• 𝐺: graph
• 𝑨: adjacency matrix 
• 𝑫:degree matrix
• 𝑣𝑜𝑙 𝐺 : volume of 𝐺

Levy and Goldberg. Neural word embeddings as implicit matrix factorization. In NIPS 2014

• #(w,c): co-occurrence of w & c
• #(w): occurrence of word w
• #(c): occurrence of context c
• 𝒟: word−context pair (w, c) multi−set
• |𝒟|: number of word-context pairs

Understanding Random Walk + Skip Gram

Graph Language NLP Language

𝑣!

𝑣!"#
𝑣!"$

𝑣!%$
𝑣!%#

random walk skip-gram



Understanding Random Walk + Skip Gram

Suppose the multiset is constructed based on random walk on 

Distinguish direction and distance

• Formally, for 𝑟 = 1, 2,⋯ , 𝑇, we define 

• #(w,c): co-occurrence of w & c
• #(w): occurrence of word w
• #(c): occurrence of context c
• 𝒟: word−context pair (w, c) multi−set
• |𝒟|: number of word-context pairs

NLP Language

1. Qiu, Dong, Ma, Li, Wang, Tang. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18



Understanding Random Walk + Skip Gram

the length of random walk 𝐿 → ∞

1. Qiu, Dong, Ma, Li, Wang, Tang. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18



𝑤!

𝑤!"#
𝑤!"$

𝑤!%$
𝑤!%#

DeepWalk is asymptotically and implicitly factorizing 

Understanding Random Walk + Skip Gram

𝑣𝑜𝑙 𝐺 =?
!

?
"

𝐴!"

𝑨 Adjacency matrix
𝑫 Degree matrix

b: #negative samples
T: context window size

1. Qiu, Dong, Ma, Li, Wang, Tang. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18 



Unifying DeepWalk, LINE, PTE, & node2vec as Matrix Factorization

• DeepWalk

• LINE

• PTE  

• node2vec

𝑣𝑜𝑙 𝐺 =?
!

?
"

𝐴!"

𝑨 Adjacency matrix
𝑫 Degree matrix

b: #negative samples
T: context window size

𝑇 = 1

1. Perozzi et al. DeepWalk: Online learning of social representations. In KDD’ 14. Most Cited Paper in KDD’14.
2. Tang et al. LINE: Large scale information network embedding. In WWW’15. Most  Cited Paper in WWW’15. 
3. Grover and Leskovec. node2vec: Scalable feature learning for networks. In KDD’16. 2nd Most Cited Paper in KDD’16.



NetMF: Explicitly Factorizing the Matrix

𝑤!

𝑤!"#
𝑤!"$

𝑤!%$
𝑤!%#

DeepWalk is asymptotically and implicitly factorizing 

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18

Matrix 
Factorization 

(NetMF)

𝑣𝑜𝑙 𝐺 =?
!

?
"

𝐴!"

𝑨 Adjacency matrix
𝑫 Degree matrix

b: #negative samples
T: context window size



NetMF

𝑺 =

1. Construction of 𝑺
2. Factorization of 𝑺

1. Qiu, Dong, Ma, Li, Wang, Tang. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM’18 



Challenge?

𝑛! non-zeros
Dense!!

𝑺 =

Time complexity
𝑂(𝑛")

six (four) degrees of separation



How to Solve it? 

NetSMF—Sparse
1. Sparse Construction of 𝑺
2. Sparse Factorization of 𝑺

𝑺 =

1. Qiu, Dong, Ma, Li, Wang, Wang, Tang. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019. 

NetMF
1. Construction of 𝑺
2. Factorization of 𝑺



Sparsify 𝑺

For random-walk matrix polynomial

where                        and      non-negative

One can construct a 1 + 𝜖 -spectral sparsifier 0𝑳 with                        non-zeros 

in time 

𝑺 =

for undirected graphs

1. Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. Spectral sparsification of random-walk matrix polynomials. arXiv:1502.03496. 2015.

Bounded 



NetSMF

Factorize the constructed matrix

1. Qiu, Dong, Ma, Li, Wang, Wang, Tang. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019. 



NetSMF---bounded approximation error

𝑴

3𝑴



• Effectiveness: NetMF (explicit MF) ≈ NetSMF (sparse MF) > DeepWalk/LINE (implicit MF)

• Scalability: NetSMF can handle billion-scale network embedding . 

Results

30% improvements 
over LINE 
(Micro-F1)

100% improvements 
over LINE 
(Macro-F1)

~100 million nodes
~1 billion edges

M
ic

ro
-F

1
M

ac
ro

-F
1



1. Qiu, Dong, Ma, Li, Wang, Wang, Tang. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019. 



1. Qiu, Dong, Ma, Li, Wang, Wang, Tang. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019. 

1. Eigen-decomp. to 
get low rank ! ≈ #$T: ! "#$ + &!$ 	

S: !(# + &!)
2. Construct
%!(#$)

3. Factorize
%!(#$)

1. Fast eigen-
decomp. to get low

rank ! ≈ #$

2. Sparse-sign randomized single pass 
SVD to avoid explicit construction & 

factorization of %!(#$)

2.Factorize 
sparse %!(!)

Time: !(*#$ + *&$!)
Space: !(# + &$)

T: ! +(+ + ,)#log& + &,!
S: !(+#log& + # + &,)

SketchNE

NetSMF/LightNE

NetMF

Goal:
To factorize

matrix %!(!)

1.Construct 
sparse %!(!)



A Brief History of Network/Graph Embedding

Spectral Partitioning [Donath, Hoffman]

Image Segmentation [Shi & Malik]

1973

2009

2016

Spectral Clustering [Ng et al.]
2000

2014
2015

1996

node2vec [Grover & Leskovec]

2005
2002

Fiedler Vector [Fiedler]

A large body of literature
[Pothen et al.] [Simon] [Bolla], 
[Hagen & Kahng] [Hendrickson & Leland]
[Barnard et al.] [Spielman & Teng]

Spectral Clustering v.s. Kernel k-means [Dhillon et al.]

2013word2vec (skip-gram) [Mikolov et al.]

LINE & PTE [Tang et al.]

DeepWalk [Perozzi et al.]

2018 NetMF [Qiu et al.]Graph attention network [Velickovic et al.]

Graph convolutional network

Graph convolutional network

Images are extracted from academic publications

2017GraphSage [Hamilton et al.]

Graph pre-training [Hu et al.] 2019

51
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ProNE

small
(thousands)

large
(billions)

medium
(millions)

• theoretical understanding of
DeepWalk, LINE, & node2vec

• handle 100M nodes
• 10-400X speedup

• embed 3.5B nodes in 1 hour

• handle 100M nodes
• best candidate in WWW’19

NetSMF

NetMF

SketchNE

Network Embedding

structure heterogeneous structure
/ knowledge graph



Heterogeneous Graphs?

Academic Graph Microsoft Office Graph

Figure Credit: Microsoft



𝑣!

𝑣!"#
𝑣!"$

𝑣!%$
𝑣!%#

Homogeneous Network Embedding

Random Walk Strategies:
o DeepWalk (walk length > 1)
o LINE          (walk length = 1)
o PTE (walk length = 1)
o node2vec (biased random walk)

1. Perozzi et al. DeepWalk: Online learning of social representations. In KDD’ 14. Most Cited Paper in KDD’14.
2. Tang et al. LINE: Large scale information network embedding. In WWW’15. Most  Cited Paper in WWW’15. 
3. Grover and Leskovec. node2vec: Scalable feature learning for networks. In KDD’16. 2nd Most Cited Paper in KDD’16.

random walk skip-gram

• How do we random walk over different types of edges?

• How do we apply skip-gram over different types of nodes? 



metapath-Based Random Walks

• Given a meta-path scheme

• The transition probability at step 𝑖 is defined as

• Recursive guidance for random walkers, i.e.,

Org Author Paper Venue
a1

a2

a3

a4

a5

MIT

CMU

ACL

KDD

p1

p2

p3

APVPA

OAPVPAO

APA

meta paths



Heterogeneous Skip-Gram

0KDD
0
0
0
0
1
0
0
0
0
0
0

ACL

MIT
CMU

a1

a2

a3

a4

a5

p1

p2

p3

input layer hidden 
layer

output layer

prob. that 
ACL appears

prob. that 
KDD appears

prob. that 
a3 appears

prob. that 
a5 appears

prob. that 
CMU appears

prob. that 
p3 appears|V|-dim

|Vp| x kP

prob. that 
p2 appears

|Vo| x ko

|VA| x kA

|VV| x kV
• softmax in metapath2vec

• softmax in metapath2vec++

• stochastic gradient descent• objective function (heterogeneous 
negative sampling)



Org Author Paper Venue
a1

a2

a3

a4

a5

MIT

CMU

ACL

KDD

p1

p2

p3

APVPA

OAPVPAO

APA

meta paths

Org Author Paper Venue
a1

a2

a3

a4

a5

MIT

CMU

ACL

KDD

p1

p2

p3

APVPA

OAPVPAO

APA

meta paths

metapath-based 
random walks

heterogeneous
skip-gram

Heterogeneous Network Embedding:
metapath2vec
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1
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0
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input layer hidden 
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output layer

prob. that 
ACL appears

prob. that 
KDD appears

prob. that 
a3 appears

prob. that 
a5 appears

prob. that 
CMU appears

prob. that 
p3 appears|V|-dim

|Vp| x kP

prob. that 
p2 appears

|Vo| x ko

|VA| x kA

|VV| x kV



Applications: Embedding Heterogeneous Academic Graph

Open Academic Graph:
• AMiner
• Microsoft Academic Graph 

metapath2vec



Applications

word2vec [Mikolov, 2013] DeepWalk / node2vec metapath2vec

Dong, Chawla, Swami. metapath2vec: scalable representation learning for heterogeneous networks. In KDD 2017.



Harvard Stanford

ColumbiaYale

UChicagoJohns Hopkins

Microsoft

GoogleAT&T Labs

MIT

Facebook

CMU

Applications
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Applications
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Billion-Scale Heterogeneous Graphs?

Facebook Entity Graph

Academic Graph

LinkedIn Economic Graph

Microsoft Office Graph

Figure Credit: Microsoft/LinkedIn/Facebook

1. How to handle billion-scale, dynamic, heterogeneous graphs?
2. How to get rid of the manual design of meta-paths?



How to Encode Network Structures?

65

VS.



Neural Networks

∑𝑾𝑿

66



Neural Networks

∑𝑾𝑿

67



Neural Networks

It is straightforward to define convolutions over images with fixed 2D structures

∑𝑾𝑿

68



Graph Neural Networks

a

e

v

b

d

c

Neighborhood Aggregation: 
o Iteratively aggregate neighbor information and pass into a neural network
o It can be viewed as a center-surround filter in CNN---graph convolutions!

1. Niepert et al. Learning Convolutional Neural Networks for Graphs. In ICML 2016
2. Defferrard et al. Convolutional Neural Networks on Graphs with Fast Locailzied Spectral Filtering. In NIPS 2016

1. Choose neighborhood

2. Determine the order of
selected neighbors

3. Parameter sharing

CNNGraph Convolution



Graph Convolutional Networks

𝒉!" = 𝜎(𝑾" '
#∈% ! ∪!

𝒉#"'(

|𝑁(𝑢)||𝑁(𝑣)|
)

the neighbors of node 𝑣

node 𝑣’s embedding at layer 𝑘

Non-linear activation function (e.g., ReLU)
parameters in layer 𝑘

a

e

v

b

d

c

1. Kipf et al. Semisupervised Classification with Graph Convolutional Networks. ICLR 2017

𝑯" = 𝜎 .𝑨𝑯 "'( 𝑾 "

normalized Laplacian matrix

Aggregate info from neighborhood via the normalized Laplacian matrix
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Graph Attention

Velickovic et al. Graph Attention Networks. ICLR 2018

GCN

Graph Attention

𝒉!" = 𝜎( '
#∈% ! ∪!

𝛼!,#𝑾"𝒉#"'()

a

e

v

b

d

c

Aggregate info from neighborhood via the learned attention

Aggregate info from neighborhood via the normalized Laplacian matrix
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𝒉!" = 𝜎(𝑾" '
#∈% ! ∪!

𝒉#"'(

|𝑁(𝑢)||𝑁(𝑣)|
)



Heterogeneous Graphs?

Figure Credit: Microsoft/LinkedIn/Facebook

Facebook Entity Graph

Academic Graph

LinkedIn Economic Graph

Microsoft Office Graph



Heterogeneous Graph Attention?

o Define unique parameters for each type of nodes & edges
o Parameterize attention & message passing weights according to the meta relation of each edge

Hu, Dong, Wang, Sun. Heterogeneous Graph Transformer. WWW 2020.

• meta relation of an edge 𝑒 = (𝑠, 𝑡)

• <author, write, paper>

𝑠
PaperAuthor

write
𝑡

• Issues of existing GNNs for

𝑡

𝑠!

𝑠"

𝑒$ = (𝑠$, 𝑡)

edge type:
𝜙(𝑒%)

𝑒% = (𝑠%, 𝑡)

node type:
𝜏(𝑠$)

edge type:
𝜙(𝑒$)

node type:
𝜏(𝑠%)

node type:
𝜏(𝑡)



Heterogeneous Graph Transformer (HGT)

Hu, Dong, Wang, Sun. Heterogeneous Graph Transformer. WWW 2020.



Heterogeneous Graph Transformer (HGT)

• heterogeneous mutual attention𝑠
PaperAuthor

write 𝑡

Hu, Dong, Wang, Sun. Heterogeneous Graph Transformer. WWW 2020.

meta relation of 𝑒 = (𝑠, 𝑡)



Heterogeneous Graph Transformer (HGT)

Hu, Dong, Wang, Sun. Heterogeneous Graph Transformer. WWW 2020.



Heterogeneous Graph Transformer (HGT)

• heterogeneous message passing𝑠
PaperAuthor

Write 𝑡

Hu, Dong, Wang, Sun. Heterogeneous Graph Transformer. WWW 2020.

meta relation of 𝑒 = (𝑠, 𝑡)

V



Heterogeneous Graph Transformer (HGT)

Hu, Dong, Wang, Sun. Heterogeneous Graph Transformer. WWW 2020.



Heterogeneous Graph Transformer (HGT)

• Target specific aggregation𝑠
PaperAuthor

Write 𝑡

Hu, Dong, Wang, Sun. Heterogeneous Graph Transformer. WWW 2020.

meta relation of 𝑒 = (𝑠, 𝑡)



Hu, Dong, Wang, Sun. Heterogeneous Graph Transformer. WWW 2020.

Heterogeneous Graph Transformer (HGT)



Transformer as GNNs

Transformer Graph Neural Nets

Figure credit: Chaitanya Joshi
81

https://towardsdatascience.com/@chaitjo?source=post_page-----bca9f75412aa----------------------


Dynamic Heterogeneous Graphs?

Facebook Entity Graph

Academic Graph

LinkedIn Economic Graph

Microsoft Office Graph

Figure Credit: Microsoft/LinkedIn/Facebook



Graph Dynamics

The common strategy: Slice the dynamic graph into multiple timestamps

Figure Credit: Michael Bronstein

https://towardsdatascience.com/@michael.bronstein?source=post_page-----ab8f327f2efe----------------------


Relative Temporal Encoding (RTE) in HGT

• Maintain all edges in different timestamps

Hu, Dong, Wang, Sun. Heterogeneous Graph Transformer. WWW 2020.



Billion-Scale Dynamic Heterogeneous Graphs?

Facebook Entity Graph

Academic Graph

LinkedIn Economic Graph

Microsoft Office Graph

Figure Credit: Microsoft/LinkedIn/Facebook



HGSampling: The Heterogeneous Mini-Batch Graph Sampling Algorithm for HGT

Figure Credit: Rex Ying



Experiments

Hu, Dong, Wang, Sun. Heterogeneous Graph Transformer. WWW 2020.

AMiner & Microsoft Academic Graph 

HGT
• Infer paper field
• Infer paper venue
• Name disambiguation
• Fake paper detection
• …



Results

HGT offers ~9−21% improvements over existing (heterogeneous) GNNs

Hu, Dong, Wang, Sun. Heterogeneous Graph Transformer. WWW 2020



Case Study

DB + Networking + IR

DM + Networking + IR + DB
DB + DM

ML + DB + Web + AI + NLP!!!

CV + ML + AI

ML + CV + DL + NLP

Experiments done w/o 2020 data!

Hu, Dong, Wang, Sun. Heterogeneous Graph Transformer. WWW 2020



What is the Best Part of HGT? 

Learn meta-paths & their weights implicitly and automatically!

Hu, Dong, Wang, Sun. Heterogeneous Graph Transformer. WWW 2020.



Billion-Scale Heterogeneous Graphs

Facebook Entity Graph

Academic Graph

LinkedIn Economic Graph

Microsoft Office Graph

Figure Credit: Microsoft/LinkedIn/Facebook

1. How to handle billion-scale, dynamic, heterogeneous graphs?
• Heterogeneity: heterogeneous attention, message passing, & aggregation;

• Scalability: HGsampling---the heterogeneous mini-batch graph sampling algo;

• Dynamics: the relative temporal encoding strategy.

2. How to get rid of the manual design of meta-paths?
• End-to-end: parametrize heterogeneous attentions based on meta relations.



Powering the Microsoft Office Graph

One enterprise graph (monthly)
• 1.6 billion entities

o 7 types of entities
• 7.8 trillion edges 

Prec. Recall F1 Accu.

GraphSage +0.00 +0.09 +0.06 +0.03

Graph Attention +0.01 +0.11 +0.08 +0.03

HGT +0.01 +0.30 +0.19 +0.07

Pre-trained 
HGT on 

one 
enterprise

Other 
enterprise 

customers w/o 
data access

Anomaly detection on Microsoft Office Graph
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small
(thousands)

large
(billions)

medium
(millions)

• handle hetero. graphs

• billion-scale (hetero.) GNNs
Hetero. Graph Transformer (HGT)

metapath2vec

Heterogeneous Graphs

structure structure with
features

heterogeneous structure
/ knowledge graph



Semi-Supervised Learning on Graphs

Input: a partially labeled &
attributed graph

Output: infer the labels of
unlabeled nodes

?

?
??



Graph Neural Networks (GNNs)

• Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. In ICLR 2017

𝑯JK6 = 𝜎 ;𝑨𝑯 J 𝑾 J

normalized Laplacian matrix

𝑯JK6 = 𝜎 𝑾𝒌 >
M∈/(0)⋃0

𝑯𝒖
𝒌

𝑁 𝑢 |𝑁(𝑣)|

node 𝑣&s embedding at 𝑘 + 1 non-linear activation function (e.g. ReLU)

the neighbors of node 𝑣

a

e

v

b

d

c



Graph Neural Networks

• Non-Robust: each node is highly dependent with its neighbors, making GNNs non-robust to noises

𝑯JK6 = 𝜎 ;𝑨𝑯 J 𝑾 J

a deterministic propagation

𝑯'($ = 𝜎 5𝑨𝑯 ' 𝑾 '

4

?

Attacker
node

Perturbation

?

4

• Zügner D, Akbarnejad A, Günnemann S. Adversarial attacks on neural networks for graph data. In KDD 2018.



Graph Neural Networks

• Non-Robust: each node is highly dependent with its neighbors, making GNNs non-robust to noises
• Over-Smoothing: stacking many GNNs layers may cause over-smoothing

𝑯JK6 = 𝜎 ;𝑨𝑯 J 𝑾 J

feature propagation is
Laplacian smoothing,

coupled with
non-linear transformation

• Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised learning. In AAAI’18.
• Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node classification. In ICLR, 2020. 



Graph Neural Networks

• Non-Robust: each node is highly dependent with its neighbors, making GNNs non-robust to noises
• Over-Smoothing: stacking many GNNs layers may cause over-smoothing
• Over-Fitting: under semi-supervised settings, standard training is easy to over-fit the scarce labels

?

?
??

1
2

3

GNN

𝑯JK6 = 𝜎 ;𝑨𝑯 J 𝑾 J

Cannot fully leverage
unlabeled data

The standard training flow for GNNs:

Loss function:
𝒚𝟏"log T𝒚𝟏 + 𝒚𝟐"log T𝒚𝟐 + 𝒚𝟑"log T𝒚𝟑



Graph Random Neural Network (GRAND)

• Random Propagation (DropNode + Propagation):
– Enhancing robustness: Each node is enabled to be not sensitive to specific neighborhoods. 
– Mitigating over-smoothing and overfitting: Decouple feature propagation from feature transformation.

Random Propagation

Augmented features

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. NeurIPS’20
• Code & data for Grand: https://github.com/Grand20/grand

https://github.com/Grand20/grand


Random Propagation: DropNode vs Dropout

• Dropout drops each element in 𝑿 independently
• DropNode drops the entire features of selected nodes, i.e., the row vectors of 𝑿, 

randomly

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. NeurIPS 2020.
• Code & data for Grand: https://github.com/Grand20/grand

https://github.com/Grand20/grand


Graph Random Neural Network (GRAND)

Consistency
Regularization

Augmented
features B𝑿

Random Propagation as data augmentation

Optimize
the

consistency

?

• Consistency Regularized Training:
– Generates 𝑆 data augmentations of the graph
– Optimizing the consistency among 𝑆 augmentations of the graph.

𝑺 Augmentations



GRAND: Consistency Regularization

Average

Sharpening

Distributions of a node
after augmentations

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. NeurIPS 2020.
• Code & data for Grand: https://github.com/Grand20/grand

https://github.com/Grand20/grand


Graph Random Neural Network (GRAND)

Consistency Regularized Training Algorithm

Consistency
Regularization

Generate
𝑺 Augmentations



Graph Random Neural Network (GRAND)

• With Consistency Regularization Loss:
– Random propagation can enforce the consistency of the classification confidence between 

each node and its all multi-hop neighborhoods. 

• With Supervised Cross-Entropy Loss:
– Random propagation can enforce the consistency of the classification confidence between 

each node and its labeled multi-hop neighborhoods. 



Results

GCNs

Sampling
GCNs

Regularization
GCNs



Results

GRAND achieves much more significant performance lifts in all three datasets!



Larger Graphs

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand


The Design Choices in GRAND



Ablation Study

1. Each of the designed components 
contributes to the success of GRAND.

2. GRAND w/o consistency regularization 
outperforms almost all 8 non-regularization 
based GCNs & DropEdge

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand


Generalization

Both the random propagation and consistency regularization improve GRAND’s generalization capability 

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand


Robustness

GRAND (with or w/o) consistency regularization is more robust than GCN and GAT. 

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand


Over-Smoothing

GRAND is very powerful to relieve over-smoothing, when GCN & GAT are very vulnerable to it 

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
• Code & data for Grand: https://github.com/Grand20/grand

https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand


GRAND

• Paperwithcode

https://paperswithcode.com/sota/node-classification-on-citeseer-with-public?p=graph-random-neural-network
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Semi-Supervised GNNs

structure structure with
features

heterogeneous structure
/ knowledge graph

• top 1 entry on 3 OGB leaderboards

• top entries on 3 paperswithcode datasets

• scalable version of GRAND

SCR

GRAND+

GRAND
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Remaining Challenges in Graph Learning

– Common issues in graph research
– Usually expensive and even infeasible to access sufficient labeled data
– Sometimes need to handle out-of-distribution predictions

– Solution: graph pre-training?
• Great success in language & image pre-training, e.g., ELMO, BERT, MoCo, GPT-n…

BERT for NLP
o Model level: Transformer 

o Pre-training Task: MLM & NSP

Pre-training for Graphs
o Model level: graph neural nets?

o Pre-training Task: ?



GNN Pre-Training

1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.



GPT-GNN: Generative Pre-Training of GNNs

• Model the graph distribution by learning to reconstruct the input graph.
– Factorize the graph likelihood into two terms: 

• Attribute Generation
• Edge Generation

Design an efficient GNN framework to optimize 

attribute and edge masked
input graph

𝑖

1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.

Lose the dependency between 𝑋𝑖 and 𝐸𝑖



GPT-GNN: Generative Pre-Training of GNNs

• Model the graph distribution by learning to reconstruct the input graph.
– Factorize the graph likelihood into two terms: 

• Attribute Generation: given observed edges, generate node attributes
• Edge Generation: given observed edges and generated attributes, generate masked edges

Design an efficient GNN framework to optimize 

attribute and edge masked
input graph

𝑖

1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.



GPT-GNN: Generative Pre-Training of GNNs

GPT-GNN

attribute
generation

attribute and edge masked
input graph

GPT-GNN

node
classification

the same input graph or graphs of the same domain

link
prediction recommendation

…

Pre-Training Fine-Tuning

GPT-GNN GPT-GNN

+

-

+
?

?

?
?

edge
generation



GPT-GNN: Generative Pre-Training of GNNs

Pre-Train Fine-Tune

• Attribute Generation
• Edge Generation

• Inferring the topic of each paper
• Inferring the venue of each paper
• Author name disambiguation

Tasks:

• Data: Microsoft Academic Graph

Base GNN model: Heterogeneous Graph Transformer (HGT)



GPT-GNN: Generative Pre-Training of GNNs

Pre-Train Fine-Tune

CS Academic Graph CS Academic Graph

Med, Bio, Physics…

CS before 2014

CS Academic Graph

CS after 2014

Med, Bio, Physics…
before 2014 CS after 2014

No Transfer:

Field Transfer:

Time Transfer:

Time + Field
Transfer:

• Data: Microsoft Academic Graph

1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.



GPT-GNN: Generative Pre-Training of GNNs

• All pre-training frameworks help the
performance of GNNs
o GAE, GraphSage, Graph Infomax
o GPT-GNN

• GPT-GNN helps the most by achieving a
relative performance gain of 9.1% over the 
base model without pre-training

• Both self-supervised tasks in GPT-GNN
help the pre-training framework
o Attribute generation
o Edge generation

1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.



GPT-GNN: Generative Pre-Training of GNNs

Pre-Train Fine-Tune

• Attribute Generation
• Edge Generation

• Inferring the topic of each paper
• Inferring the venue of each paper
• Author name disambiguation

Tasks:

• Data: Microsoft Academic Graph

Base GNN model: Heterogeneous Graph Transformer (HGT)

1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.





The Promise of Graph Pre-Training!



The Promise of Graph Pre-Training!

During fine-turning

The GNN model w/o pre-training with 100% training data
VS

The pre-trained GNN model with 10-20% training data

1.Hu, Dong, Wang, Chang, Sun. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.



GPT-GNN: Generative Pre-Training of GNNs

GPT-GNN

attribute
generation

attribute and edge masked
input graph

GPT-GNN

node
classification

the same input graph or graphs of the same domain

link
prediction recommendation

…

Pre-Training Fine-Tuning

GPT-GNN GPT-GNN

+

-

+
?

?

?
?

edge
generation



Graph AutoEncoder

• 𝐺 = (𝑉, 𝐴, 𝑋)
– 𝐴 ∈ 0, 1 /×/: adjacency matrix, 
– 𝑋 ∈ ℝ/×@: node features

• Encoding
– 𝐻 = 𝑓X 𝐴, 𝑋 ,

• Decoding
– 𝐺Y = 𝑓Z 𝐴,𝐻

• Reconstruction objectives: 
– graph structure (link)
– node features 

𝑿 𝑨

Encoder

𝑯

Decoder

;𝑿 ;𝑨



1. Reconstruction Target

2. Reconstruction method

3. Decoding strategy4. Error function



Generative SSL for Graphs: Graph AutoEncoder?

1. What to reconstruct ?

2. How to avoid trivial solutions ?

3. How to design the decoding ?

4. What error function to use ?

𝑿 𝑨

Encoder

𝑯

Decoder

;𝑿 ;𝑨



Graph AutoEncoder



GraphMAE



Masked Feature Reconstruction

– Feature construction as the learning objective
– Masked feature reconstruction

1. Sample a subset of nodes !𝑉 ⊂ 𝑉
2. Replace node feature with [MASK]

• 𝐻 = 𝑓)(𝐴, (𝑋)



GNNs as Decoder with Re-Mask Decoding

• s

• Use a GNN as the decoder
– A more expressive decoder helps reconstruct low informative features

• Re-mask node features before decoder
– Re-mask the “masked” nodes

• 3𝐻 = Remask 𝐻 , 𝑍 = 𝑓Z(𝐴, 3𝐻)



Scaled Cosine Error as the Criterion

• MSE fails, especially for continuous features 
– Sensitivity & low selectivity

𝐿[\X =
1
| 0𝑉|

>
0$∈]̂

𝑥, − 𝑧, _

• Scaled cosine error as the criterion 
– Cosine error & Scaled coefficient



1. Reconstruction Target

2. Reconstruction method

3. Decoding strategy4. Error function

GraphMAE vs GAEs



Node classification

GraphMAE



Node Classification

Code: https://github.com/THUDM/GraphMAE

https://github.com/THUDM/GraphMAE


Graph Classification

Code: https://github.com/THUDM/GraphMAE

https://github.com/THUDM/GraphMAE


Transfer Learning

Code: https://github.com/THUDM/GraphMAE

https://github.com/THUDM/GraphMAE


Ablation Study

Effects of the decoder type, objective function and mask strategy



GNN Pre-Training on the “Same” Networks

GPT-GNN

attribute
generation

attribute and edge masked
input graph

GPT-GNN

node
classification

the same input graph or graphs of the same domain

link
prediction recommendation

…

Pre-Training Fine-Tuning

GPT-GNN GPT-GNN

+

-

+
?

?

?
?

edge
generation

1.Ziniu Hu et al. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.
2.Zhenyu Hou et al. GraphMAE: Self-supervised graph autoencoders. KDD 2022.



Many Graphs

Office/Social Graph

InternetKnowledge Graph

Biological Neural Networks

Transportation
figure credit: Web



GNN Pre-Training

1.Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020.



GNN Pre-Training across Networks

• What are the requirements?
– structural similarity, it maps vertices with similar local network 

topologies close to each other in the vector space

– transferability, it is compatible with vertices and graphs unseen by 
the pre-training algorithm

1.Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020.
2.Code & Data for GCC: https://github.com/THUDM/GCC

https://github.com/THUDM/GCC


GNN Pre-Training across Networks
• The Idea: Contrastive learning

• pre-training task: instance discrimination

• InfoNCE objective: output instance representations that are capable of 
capturing the similarities between instances

• Contrastive learning for graphs?
• Q1: How to define instances in graphs?
• Q2: How to define (dis) similar instance pairs in and across graphs?
• Q3: What are the proper graph encoders? 

• query instance 𝑥&
• query 𝒒 (embedding of 𝑥&), i.e., 𝒒 = 𝑓(𝑥&)
• dictionary of keys 𝒌', 𝒌(, ⋯ , 𝒌)
• key 𝒌 = 𝑓(𝑥*)

1. Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-parametric instance discrimination. In CVPR ’18.
2. Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Momentum contrast for unsupervised visual representation learning. In CVPR ’20.



Graph Contrastive Coding (GCC)
Contrastive learning for graphs
• Q1: How to define instances in graphs?
• Q2: How to define (dis) similar instance pairs in and across graphs?
• Q3: What are the proper graph encoders? 

Subgraph instance 
discrimination

1.Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020.
2.Code & Data for GCC: https://github.com/THUDM/GCC

https://github.com/THUDM/GCC


GCC Pre-Training / Fine-Tuning
• pre-train on six graphs

• fine-tune on different graphs
– US-Airport & AMiner academic graph

• Node classification
– COLLAB, RDT-B, RDT-M, & IMDB-B, IMDB-M

• Graph classification
– AMiner academic graph

• Similarity search

• The base GNN
– Graph Isomorphism Network (GIN)

1.Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020.
2.Code & Data for GCC: https://github.com/THUDM/GCC

https://github.com/THUDM/GCC


Results
Node Classification

Graph Classification

Similarity Search

1.Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020.
2.Code & Data for GCC: https://github.com/THUDM/GCC

https://github.com/THUDM/GCC


Results

1.Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020.
2.Code & Data for GCC: https://github.com/THUDM/GCC

https://github.com/THUDM/GCC


Does the pre-training of GNNs learn the universal structural patterns 
across networks?

GCC: universal patterns?

subgraph instance discrimination

GCC

node
classification

Pre-Training Fine-Tuning

Facebook IMDB DBLP US-Airport

GCC

graph
classification

Reddit

…

1.Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020.
2.Code & Data for GCC: https://github.com/THUDM/GCC

https://github.com/THUDM/GCC
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Why a Graph ML Benchmark?

156

1) Current datasets are small:
– Too small to be realistic
– Hard to reliably and rigorously evaluate algorithms 

2) Evaluation protocol is not unified:
– Every paper uses its own train/test split and metrics
– Performance across papers is not comparable

3) Dataset splits follow conventional random splits:
– Unrealistic for real-world applications
– Accuracies are over-optimistic under conventional splits

Slides modified from Weihua Hu



Open Graph Benchmark (OGB)

Large-scale, realistic, and diverse benchmark datasets for graph ML.

Paper: NeurIPS 2020
Leaderboards: https://ogb.stanford.edu/

https://ogb.stanford.edu/


Open Graph Benchmark (OGB)

158

• Covers diverse ML tasks, domains, and scales.
• Open to suggestion from the community.

Slides modified from Weihua Hu

Paper: NeurIPS 2020
Leaderboards: https://ogb.stanford.edu/

https://ogb.stanford.edu/


Open Graph Benchmark (OGB)

• An end-to-end pipeline for graph ML research
1. Large-scale datasets for key task categories

– Node/link/graph property prediction
2. Data loader for automatically downloading, processing, & splitting the 

datasets.
– Compatible to Pytorch Geometric, DGL, &CogDL

3. Evaluator for unified automatic evaluation.
• We envision OGB to be common, community-driven platform 

for graph ML research & teaching resource

Slides modified from Weihua Hu



• Baidu
• DeepMind
• Synerise AI

• Baidu
• Harbin Inst. of Tech.
• USTC

• MSR
• Baidu
• DeepMind



May 24, 2022

Start Team registration deadline Final submission deadline Winner notification

Sep. 02, 2022 Nov. 01, 2022 Nov. 04, 2022

https://ogb.stanford.edu/neurips2022/



CogDL.ai
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small
(thousands)

large
(billions)

medium
(millions)

Open Graph Benchmark (OGB)

CogDL
• easy-to-use

GNN library

Open Data & Toolkit

structure no label
(pre-training)

structure with
features

heterogeneous structure
/ knowledge graph
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ProNE

small
(thousands)

large
(billions)

medium
(millions)

• large-scale pre-training
• used in FB & Microsoft

• theoretical understanding of
DeepWalk, LINE, & node2vec

• most cited in WSDM’18 (2nd)

• handle 100M nodes
• 10-400X speedup

• embed 3.5B nodes in 1 hour

• handle 100M nodes
• best candidate in WWW’19
• used in Microsoft

• handle hetero. Graphs
• most cited in KDD’17
• used in Microsoft

• billion-scale (hetero.) GNNs
• most cited in WWW’20
• used in FB & Microsoft

NetSMF

Open Graph Benchmark (OGB)

Hetero. Graph Transformer (HGT)

• top 1 entry on 3 OGB leaderboards

NetMF

GPT-GNN

CogDL

• top entries on 3 paperswithcode datasets

• scalable version of GRAND

SCR

SketchNE

metapath2vec GRAND+

GRAND

• easy-to-use
GNN library

Graph Representation Learning and Pre-Training

• contrastive pre-training
• most cited in KDD’20

• generative pre-training

GCC

GraphMAE

structure no label
(pre-training)

structure with
features

heterogeneous structure
/ knowledge graph

Google scholar as of Aug. 2022
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small
(thousands)

large
(billions)

medium
(millions)

Open Graph Benchmark (OGB)

CogDL

• knowledge graph big model & pre-training (KDD’22)
Knowledge Graph Transformer (kgTransformer)

• easy-to-use
GNN library

Graph Representation Learning and Pre-Training

• best candidate in WWW’22
Self-Supervised KG Entity Linking (SelfKG)

structure no label
(pre-training)

structure with
features

heterogeneous structure
/ knowledge graph



Pre-Training with Knowledge

Facebook Entity Graph

Academic Graph

LinkedIn Economic Graph

Microsoft Office Graph

Figure Credit: Microsoft/LinkedIn/Facebook



Autoimmunity
Insulin resistance

Nephropathy

Pregnancy

Diabetic retinopathy

Kidney disease

Insulin

Streptozotocin

Cytokine

Glucagon

Insulin glargine

Pancreas transplantation

Insulin lispro

Insulin aspart
Physical exercise

Regular insulin

Insulin degludec

Pramlintide

Edmonton protocol

Insulin glulisine

Acarbose

Diabetic diet

Miglitol
Autoimmune disease

Microalbuminuria

Albuminuria

Ketoacidosis

Weight loss

Polyuria

Polydipsia

Glycosuria

Polyphagia

Muscle cramp

Blurred vision

Diabetes

Cause Symptom Treatment

Neural Symbolic Reasoning

167



Cause Symptom Treatment

Neural Symbolic Reasoning
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1. Zhenyu Hou, et al. GraphMAE: Self-Supervised Masked Graph Autoencoders. KDD 2022.
2. Xiao Liu, et al. Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries. KDD 2022.
3. Xiao Liu, et al. SelfKG: Self-Supervised Entity Alignment in Knowledge Graphs. WWW 2022. Best Paper Candidate.
4. Wenzheng Feng, et al. GRAND+: Scalable Graph Random Neural Networks. WWW 2022.
5. Yukuo Cen, et al. CogDL: A Unified Library for Graph Neural Networks. https://cogdl.ai/.
6. Chenhui Zhang, et al. SCR: Training Graph Neural Networks with Consistency Regularization. arXiv.
7. Tinglin Huang, et al. MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems. KDD 2021.
8. Xu Zou, et al. TDGIA: Effective Injection Attacks on Graph Neural Networks. KDD 2021.
9. Wenzheng Feng, et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. NeurIPS 2020.
10. Weihua Hu et al. Open Graph Benchmark: Datasets for Machine Learning on Graphs. NeurIPS 2020.
11. Ziniu Hu et al. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020. Top cited in KDD’20
12. Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020. Most cited in KDD’20
13. Ziniu Hu et al. Heterogeneous Graph Transformer. WWW 2020. Most cited in WWW’20
14. Yuxiao Dong et al. Heterogeneous Network Representation Learning. IJCAI 2020.
15. Jie Zhang et al. ProNE: Fast and Scalable Network Representation Learning. IJCAI 2019.
16. Jiezhong Qiu et al. NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization. WWW 2019. Best Paper Candidate
17. Jiezhong Qiu et al. Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec. WSDM 2018. 2nd Most cited in WSDM’18
18. Yuxiao Dong et al. metapath2vec: Scalable Representation Learning for Heterogeneous Networks. KDD 2017. Most cited in KDD’17

Thank you!

References

Papers & Data & Code available at https://keg.cs.tsinghua.edu.cn/yuxiao/

https://cogdl.ai/
https://keg.cs.tsinghua.edu.cn/yuxiao/


Xiao Liu, Jiezhong Qiu, Ziniu Hu, Wenzheng Feng, Zhenyu Hou

Yukuo Cen, Weihua Hu, Jie Zhang, Chenhui Zhang, Yuyang Xie

Hao Ma, Kuansan Wang, Yizhou Sun, Jure Leskovec, Jie Tang

Thank you!
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ProNE

small
(thousands)

large
(billions)

medium
(millions)

• large-scale pre-training
• used in FB & Microsoft

• theoretical understanding of
DeepWalk, LINE, & node2vec

• most cited in WSDM’18 (2nd)

• handle 100M nodes
• 10-400X speedup

• embed 3.5B nodes in 1 hour

• handle 100M nodes
• best candidate in WWW’19
• used in Microsoft

• handle hetero. Graphs
• most cited in KDD’17
• used in Microsoft

• billion-scale (hetero.) GNNs
• most cited in WWW’20
• used in FB & Microsoft

NetSMF

Open Graph Benchmark (OGB)

Hetero. Graph Transformer (HGT)

• top 1 entry on 3 OGB leaderboards

NetMF

GPT-GNN

CogDL

• top entries on 3 paperswithcode datasets

• scalable version of GRAND

SCR

SketchNE

metapath2vec GRAND+

GRAND

• easy-to-use
GNN library

Graph Representation Learning and Pre-Training

• contrastive pre-training
• most cited in KDD’20

• generative pre-training

GCC

GraphMAE

structure no label
(pre-training)

structure with
features

heterogeneous structure
/ knowledge graph

Google scholar as of Aug. 2022
Thank you!


