Graph Representation Learning and Pre-Training

Yuxiao Dong

Knowledge Engineering Group (KEG)
Department of Computer Science and Technology
Tsinghua University

https://keg.cs.tsinghua.edu.cn/yuxiao/
yuxiaod@tsinghua.edu.cn



Joint Work with

Xiao Liu, Jiezhong Qiu, Ziniu Hu, Wenzheng Feng, Zhenyu Hou
Yukuo Cen, Weihua Hu, Jie Zhang, Chenhui Zhang, Yuyang Xie

Hao Ma, Kuansan Wang, Yizhou Sun, Jure Leskovec, Jie Tang



Graphs in Society

trendingAround Shared with me

0 COMMERCIAL & INDUSTRIAL
BUSINESS CONSUMERS

o DISTRIBUTION
AUTOMATION
DEVICES

o RESIDENTIAL CONSUMERS

Internet Electrical Grid Network Transportation _
figure credit: Web 2



Graphs in Nature

| Graphs are widely used for
Bl abstracting complex systems of §
interacting objects!
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Graph Representation Learning
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How to Embed Graph Structures?

“Graph, a structure made of vertices and edges”
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Network Embedding
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 embed 3.5B nodes in 1 hour
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Heterogeneous Graphs

[ ] [ Hetero Graph Transformer (HGT) ]
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Graph Neural Networks
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Graph Pre-Training and Self-Supervised Learning
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Graph Pre-Training and Self-Supervised Learning

_________

[ Knowledge Graph Transformer (KGTransformer) ]
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Open Data & Toolkit
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Graph Representation Learning and Pre-Training
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Pre-Train for Cognitive Reasoning
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Pre-Train for Cognitive Reasoning
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