Graph Representation Learning and Pre-Training

Yuxiao Dong

Knowledge Engineering Group (KEG) Department of Computer Science and Technology Tsinghua University

> https://keg.cs.tsinghua.edu.cn/yuxiao/ yuxiaod@tsinghua.edu.cn

Joint Work with

Xiao Liu, Jiezhong Qiu, Ziniu Hu, Wenzheng Feng, Zhenyu Hou Yukuo Cen, Weihua Hu, Jie Zhang, Chenhui Zhang, Yuyang Xie Hao Ma, Kuansan Wang, Yizhou Sun, Jure Leskovec, Jie Tang

Graphs in Society

Internet

Electrical Grid Network

Transportation

figure credit: Web 2

Graphs in Nature

Graphs are widely used for abstracting complex systems of sinteracting objects!

Food Web

Human Disease Networks

Protein-Protein Interactions

Graph Representation Learning

- Input: a graph G = (V, E)
- Output: $\mathbf{Z} \in \mathbb{R}^{|V| \times k}$, $k \ll |V|$, k-dim vector \mathbf{Z}_{v} for each node v. •

J. Malik

CVPR

How to Embed Graph Structures?

VS.

"Graph, a structure made of vertices and edges"

						0	٥							٥				
	0	0	0	0	0	12	0	11	20	127	27	0	102	147	04	0	0	0
	0	0	0	0	1	12	0	100	220	72/	225	102	727	197	P0	11	12	0
	0	0	1	0		0	41	100	250	200	200	102	200	238	200	11	12	0
		0	0	10	9	9	150	251	45	21	184	159	154	200	255	40	0	0
	10	0	0	0	0	0	145	146	3	10	0	11	124	253	255	107	0	0
	0	0	3	0	4	15	Z36	216	0	0	38	109	Z47	Z40	169	0	11	0
	1	0	2	0	0	0	253	253	23	62	224	241	255	164	0	5	0	0
	6	0	0	4	0	3	252	250	228	255	255	234	112	28	0	2	17	0
	0	2	1	- 4	0	21	255	253	251	255	172	31	8	0	1	0	0	0
	0	0	- 4	0	163	225	251	255	229	120	0	0	0	0	0	11	0	0
	0	0	21	162	255	255	254	255	126	6	0	10	14	6	0	0	9	0
	3	79	242	255	141	66	255	245	189	7	8	0	0	5	0	0	0	0
	26	221	237	98	0	67	251	255	144	0	8	0	0	7	0	0	11	0
1	25	255	141	0	87	244	255	288	3	0	0	13	0	1	0	1	0	0
1	45	248	228	116	235	255	141	34	0	11	0	1	0	0	0	1	3	0
	85	237	253	246	255	210	21	-1	0	1	0	0	6	-2	4	0	0	0
	6	23	112	157	114	32	0	0	0	0	2	0	8	0	7	0	0	0
1	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Network Embedding

7

Heterogeneous Graphs

Graph Neural Networks

Graph Pre-Training and Self-Supervised Learning

Graph Pre-Training and Self-Supervised Learning

Open Data & Toolkit

Graph Representation Learning and Pre-Training

Pre-Train Graphs with Language/Image/Knowledge

Academic Graph

Microsoft Office Graph

LinkedIn Economic Graph

Facebook Entity Graph

Pre-Train for Cognitive Reasoning

Pre-Train for Cognitive Reasoning

Cause

Symptom

Treatment

References

- 1. Zhenyu Hou, et al. GraphMAE: Self-Supervised Masked Graph Autoencoders. KDD 2022.
- 2. Xiao Liu, et al. Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries. KDD 2022.
- 3. Xiao Liu, et al. SelfKG: Self-Supervised Entity Alignment in Knowledge Graphs. WWW 2022. Best Paper Candidate.
- 4. Wenzheng Feng, et al. GRAND+: Scalable Graph Random Neural Networks. WWW 2022.
- 5. Yukuo Cen, et al. CogDL: A Unified Library for Graph Neural Networks. https://cogdl.ai/.
- 6. Chenhui Zhang, et al. SCR: Training Graph Neural Networks with Consistency Regularization. arXiv.
- 7. Tinglin Huang, et al. MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems. KDD 2021.
- 8. Xu Zou, et al. TDGIA: Effective Injection Attacks on Graph Neural Networks. KDD 2021.
- 9. Wenzheng Feng, et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. NeurIPS 2020.
- 10. Weihua Hu et al. Open Graph Benchmark: Datasets for Machine Learning on Graphs. NeurIPS 2020.
- 11. Ziniu Hu et al. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020. Top cited in KDD'20
- 12. Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020. Most cited in KDD'20
- 13. Ziniu Hu et al. Heterogeneous Graph Transformer. WWW 2020. Most cited in WWW'20
- 14. Yuxiao Dong et al. Heterogeneous Network Representation Learning. IJCAI 2020.
- 15. Jie Zhang et al. ProNE: Fast and Scalable Network Representation Learning. IJCAI 2019.
- 16. Jiezhong Qiu et al. NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization. WWW 2019. Best Paper Candidate
- 17. Jiezhong Qiu et al. Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec. WSDM 2018. Most cited in WSDM'18
- 18. Yuxiao Dong et al. metapath2vec: Scalable Representation Learning for Heterogeneous Networks. KDD 2017. Most cited in KDD'17

Thank you!

Papers & data & code available at <u>https://keg.cs.tsinghua.edu.cn/yuxiao/</u> yuxiaod@tsinghua.edu.cn