
RESTFul: Resolution-Aware Forecasting of Behavioral Time
Series Data

Xian Wu
1

Baoxu Shi
1

Yuxiao Dong
2

Chao Huang
1

Louis Faust
1

Nitesh V. Chawla
1

University of Notre Dame
1

Microsoft Research
2

{xwu9, bshi, chuang7, lfaust, nchawla}@nd.edu yuxdong@microsoft.com

ABSTRACT
Leveraging historical behavioral data (e.g., sales volume and email

communication) for future prediction is of fundamental importance

for practical domains ranging from sales to temporal link predic-

tion. Current forecasting approaches often use only a single time

resolution (e.g., daily or weekly), which truncates the range of ob-

servable temporal patterns. However, real-world behavioral time

series typically exhibit patterns across multi-dimensional temporal

patterns, yielding dependencies at each level. To fully exploit these

underlying dynamics, this paper studies the forecasting problem for

behavioral time series data with the consideration of multiple time

resolutions and proposes a multi-resolution time series forecasting

framework, RESolution-aware Time series Forecasting (RESTFul).

In particular, we first develop a recurrent framework to encode

the temporal patterns at each resolution. In the fusion process, a

convolutional fusion framework is proposed, which is capable of

learning conclusive temporal patterns for modeling behavioral time

series data to predict future time steps. Our extensive experiments

demonstrate that the RESTFul model significantly outperforms the

state-of-the-art time series prediction techniques on both numerical

and categorical behavioral time series data.

CCS CONCEPTS
• Mathematics of computing→ Time series analysis;

KEYWORDS
Time Series Forecasting, Multiple Resolutions, Deep Learning

ACM Reference Format:
XianWu

1
Baoxu Shi

1
YuxiaoDong

2
ChaoHuang

1
Louis Faust

1
Nitesh

V. Chawla
1
. 2018. RESTFul: Resolution-Aware Forecasting of Behavioral

Time Series Data. In The 27th ACM International Conference on Informa-
tion and Knowledge Management (CIKM ’18), October 22–26, 2018, Turin,
Italy. ACM, New York, NY, USA, Article 4, 10 pages. https://doi.org/10.1145/

3269206.3271794

1 INTRODUCTION
Forecasting of behavioral time series data (e.g., sales volume and

email communication) has benefited many real-world applications,

with the aim of predicting future trends by understanding past

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM’18, Oct 22-26 2018, Turin, Italy
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00

https://doi.org/10.1145/3269206.3271794

behavioral observations [25, 33]. For example, real value regression

in sales prediction and categorical label classification for email com-

munication prediction. A breadth of research has been devoted to

developing appropriate models by learning patterns in generated

time series for making predictions. One of the most popular fore-

casting models is the Autoregressive Integrated Moving Average

(ARIMA) model [32], which assumes the linear relations in behav-

ioral time series data based on a particular statistical distribution

(e.g., normal distribution). Support Vector Regression (SVR) [4], an-

other well known forecasting method, are also frequently applied in

time series prediction due to the globally optimal solution they ob-

tain. However, these approaches share a common deficiency in that

they cannot capture the complex temporal dependencies, which

may not properly reflect the variation in behavioral time series

data across different time frequencies. To deal with the complex

temporal relations, recurrent neural network models are proposed

to handle non-linearities in time series data [23, 27, 39].

However, a common drawback of the above approaches is that

only one time resolution (e.g., daily or weekly) is considered to

model the temporal patterns of behavioral time series data, which

may not properly reflect the variation of time series across differ-

ent time frequencies [35]. Consider retail for example, sales for

a particular product are more likely to be high on a given day if

that product has sold well over the previous few days. In addition,

sales are impacted by weekday patterns, such as Saturdays typically

being the busiest shopping days of the week. Hence, it is difficult to

determine which temporal resolutions (e.g., daily, weekly, monthly

patterns) are more likely to yield useful patterns for making future

forecasts. Because the existing research works typically use only a

single resolution, temporal patterns learned by existing approaches

may not be as accurate. To capture more comprehensive temporal

patterns, a natural solution may lie in leveraging information from

multiple time resolutions.

This presents a new problem statement: learning temporal pat-
terns of behavioral time series data from multiple time resolutions.
However, developing such a time series forecasting framework

relies on addressing the following important technical challenges:

• Long-range Temporal Dynamics. Existing neural network-

based time series forecasting models seldom handle the long-

range dependencies in behavioral time series data due to compu-

tational efficiency, i.e., time-consuming gradient derivation as it

is propagated back through time steps. This oversimplification

on the input sequence leads to sub-optimal forecasting results as

the useful information of long-range dependency (e.g., monthly

or seasonal patterns) is ignored in this abstraction.

• Lack of Comprehensive Learning. Temporal patterns may

evolve over time and as changes occur, future time series data

may become more relevant to a different temporal resolution. It

https://doi.org/10.1145/3269206.3271794
https://doi.org/10.1145/3269206.3271794
https://doi.org/10.1145/3269206.3271794

is challenging to summarize useful information from patterns

across different time resolutions in assisting the prediction.

To tackle the above challenges, we propose a neural network

framework calledRESolution-awareTime Series Forecasting (REST-
Ful), that explicitly models long-range temporal dependencies in

behavioral time series data. RESTFul introduces a set of “time

resolution-aware sequences” to preserve time series patterns w.r.t.

different time resolutions (e.g., day or week). Although different

resolution-aware sequences share the same length, they reflect tem-

poral patterns over different time periods (e.g., recent 5 days/months,

given a sequence length of 5).

With the constructed resolution-aware sequences, RESTFul first

proposes a recurrent framework to encode the evolving tempo-

ral patterns of each sequence with a low-dimensional representa-

tion. Next, RESTFul integrates the learned representations from

resolution-aware sequences into a convolutional fusion frame-

work. In essence, we aim to precisely model the complex inter-

dependencies between the sequential patterns with different time

resolutions. Finally, the learned conclusive embedding vector is fed

into a Multilayer Perceptron (MLP) for forecasting behavioral time

series data.

The advantages of the proposed RESTFul model are as follows.

First, by considering the temporal dependencies w.r.t. different time

resolutions, the proposed model outperforms state-of-the-art time

series forecasting approaches in terms of prediction accuracy. Sec-
ond, the model can automatically summarize the temporal patterns

to model the behavioral data in the predicted time slots, which is

obtained by considering the complex inter-dependencies between

different resolution-aware time-ordered sequences. Finally, the pro-

posed RESTFul model is robust to numerical and categorical be-

havioral time series data types and therefore applicable to a wide

variety of real-world problems.

In summary, the main contributions of this paper are as follows:

• We present a new framework named RESTFul: Resolution-Aware

Time Series Forecasting (RESTFul) to explicitly explore time-

evolving temporal patterns in behavioral time series data with

the consideration of different time resolutions. To the best of our

knowledge, this is the first framework to generalize the behav-

ioral time series forecasting with multiple time resolutions.

• The RESTFul framework (i) captures resolution-aware evolving

dependencies in behavioral time series data with a developed

recurrent framework; (ii) proposes a convolutional fusion frame-

work to integrate temporal patterns, with respect to different

time resolutions, into a conclusive representation learning archi-

tecture for making predictions.

• Extensive experiments show that our approach significantly out-

performs state-of-the-art models on both numerical and cate-

gorical real-world datasets, corresponding to different types of

time series forecasting applications. Specifically, our approach

achieves 68.6%, 119% and 8.4% improvement over the best base-

line method on Rossmann store sales, email communication and

urban complaint data, respectively.

2 PROBLEM FORMULATION
In this section, we introduce necessary terminologies used in this

paper and then formally present the problem statement.

Definition 1. Behavioral Time Series. A behavioral time se-
ries is a sequential set of measurements collected at equally spaced
intervals from human behavior (e.g., purchase or email communi-
cation) over a period of time. Formally, a behavioral time series can
be defined as a vector X = [x1, . . . ,xt , . . . ,xT] (t ∈ [1, . . . ,T]) in a
chronological order, where xt is the value (i.e., continuous or discrete
value) at t-th time interval.

Definition 2. Behavioral Time Series Forecasting. Behav-
ioral time series forecasting aims to predict the future behavioral
data by understanding past time-ordered observations. Formally, it
can be presented as: given behavioral time series data from previous
k time steps (i.e., [xT−k , . . . ,xT]), the objective is to infer the value
at later time steps xT ′ , where T ′ ≥ T .

Given that a behavioral time series is generated in uniform inter-

vals with different time resolutions, we further give the following

time resolution definitions which are relevant to constructing the

multiple resolution time series.

Definition 3. Interval Resolution α : We define interval reso-
lution α as the time frame granularity to represent the time difference
between two successive data points in a time series. For example, the α
of time series X is day if the constructed time series is measured on a
daily basis and α is weekly if the constructed time series is measured
on a weekly basis.

Definition 4. Temporal Resolution β : We define temporal res-
olution β to represent the frequency over which time period xt is
measured in. For example, the β of time series X is weekly if xt is
measured on a week-to-week frequency.

Note that the interval resolution α should be equal to or more

coarse-grained than temporal resolution β . One significant limita-

tion of existing forecasting methods is that they only take one time

series X as input, and therefore just consider a single resolution for

both α and β and setting α = β . In contrast, this work solves the

time series forecasting problem by explicitly exploring time series

patterns with different time resolutions. In particular, we model X
with the combinations of different α and β with respect to different

time resolution sets α and β .

3 RESTFUL: RESOLUTION-AWARE TIME
SERIES FORECASTING FRAMEWORK

The RESTFul model is a two-stage representation learning frame-

work. In first stage, we develop a recurrent framework to encode

the temporal dynamics of time series data different configurations

of time resolutions (i.e., interval resolution α and temporal reso-

lution β). Then, we develop a convolutional fusion framework to

jointly consider the time series patterns generated from the recur-

rent framework, to interpret the actual time series patterns for the

predicted time steps. The model illustration is shown in Figure 1.

Multiple Resolution Tensor RR

Output scalar ŷ̂y

…

Temporal Resolution |βββ||βββ|

In
te

rv
a
l
R

e
s
o

lu
ti
o

n
 |αα α

|
|αα α
|

d
s
d
s channels

…d
s /2
d
s /2 channels

…
d
s /4
d
s /4 channels

…

d
s /4× |α|× |β|

d
s /4× |α|× |β| hidden units

Convolution
2x2 Kernel

Flatten MLP

TT

…R
α
i ,β

j ,1:d
s

R
α
i ,β

j ,1:d
s

{{ { {

Length-dsds hidden state vector

of interval resolution α ∈ αα ∈ α

and temporal resolution β ∈ ββ ∈ β σσσσ

X

X

1-

tanh

X

+

σσσσ

X

X

1-

tanh

X

+

σσσσ

X

X

1-

tanh

X

+

σσσσ

X

X

1-

tanh

X

+

T − αT − α T − 2αT − 2α T − 3αT − 3α T − kαT − kα

T − kα+ βT − kα+ βT − 3α+ βT − 3α+ βT − 2α+ βT − 2α+ βT − α+ βT − α+ β

(a) model temporal dynamics via GRU

(b) learn conclusive representation via CNN (c) predict output via MLP

Convolution
2x2 Kernel

Figure 1: The RESTFul: Resolution-Aware Time Series Forecasting (RESTFul) Framework.

3.1 Modeling Temporal Dynamics via
Recurrent Framework

Multi-period patterns exist in many real-world behavior time series

data [1]. For example, sales of a store may spike in the first days of

each season since the company introduces a new line of products at

the beginning of every season, resulting in a seasonal pattern. On

the contrary, sales on a regular weekday might be most relevant to

sales on the same weekday last week, such as Saturdays typically

being busy shopping days. Many recent works might not be able

to capture these long and complicated time-dependent patterns

due to their fixed resolution and limited length input sequences.

Therefore, we propose to capture patterns between time series data

points with different time resolutions.

Given the original time series X = [x1, . . . ,xt , . . . ,xT−1,xT]
was collected at a daily frequency, setting interval and temporal

resolutions α , β ∈ {day : 1,week : 7}, we can generate 3 dif-

ferent length-k time series as follows: (i) α = β = {day : 1}:

X = [xT−k+1, · · · ,xT−1,xT]. (ii) α = {week : 7} and β = {day : 1}:

X = [xT−7(k+1), · · · ,xT−7,xT] where xt is measured once a week.

(iii) α = β = {week : 7}: X = [xT−7k , · · · ,xT−14,xT−7] where
xt = д(xt , · · · ,xt+β), in which д(·) is some combination function

(e.g.average operation or max operation) that generates a mea-

surement over a period of a whole week. That is to say, we can

generate
dr (dr+1)

2
unique time series with different configurations

of {⟨α , β⟩|α ∈ α , β ∈ β,α ≥ β} to represent multiple periodic time

series distributions, in which dr = min(|α |, |β |).
To encode the resolution-aware time series patterns, we develop

a recurrent framework to capture the time-evolving dependencies

in the generated time-ordered sequences with different resolutions.

Recurrent Neural Network (RNN) models have been widely appli-

cable in time series analysis. There exist various RNN architectures

with different recurrent units, such as simple RNN, Long Short Term

Memory (LSTM) and Gated Recurrent Units (GRU). In this section,

we introduce GRU as an example for our recurrent framework for

its simplicity. An illustration is shown in Figure 1.(a). The proposed

recurrent framework is flexible in employing other recurrent units

(e.g., simple RNN or LSTM). We show how different recurrent units

influence model performance in Section 4.

In particular, GRU proposes to derive the vector representations

of hidden states ht for each time step t as follows:

rt =σ (Wrht−1 +Vrxt + bi)

zt =σ (Wzht−1 +Vzxt + bo)

h̃t =ϕ(Whht−1 +Vh (rt ⊙ h̃t−1) + bh)

ht =zt ⊙ ht−1 + (1 − zt) ⊙ h̃t (1)

whereW∗ ∈ Rds×ds represents the transformation matrix from

the previous state ht−1 to GRU cell and V∗ ∈ Rdx×ds are the trans-
formation matrices from input to GRU cell, where dx and ds de-
notes the dimension of input vectors and hidden states, respectively.

Furthermore, b∗ ∈ Rds is defined as the bias term. σ (·), ϕ(·), and
⊙ represents the sigmoid function, tanh function, and element-

wise product, respectively. In Eq. 1, rt and zt represent update

and reset gates, respectively. For simplicity, we denote Eq. 1 as

ht = GRU(∗,ht−1) in the following subsections. The derivations of

the hidden vector representation ht for each time step t is formally

given as follows:

h
α,β
1
= GRU(xt−kα,β ,h

α,β
0

)

· · ·

h
α,β
k = GRU(xt−1α,β ,h

α,β
k−1) (2)

where xt−1α,β is the (t − 1)-th observed data point in time series Xα,β
with the corresponding interval resolution α and temporal resolu-

tion β . For each configuration of interval and temporal resolution

⟨α , β⟩, we denote the corresponding hidden state vector as h
α,β
t .

In particular, given dr different time resolutions, we can generate

dr (dr+1)
2

sequences and thus get
dr (dr+1)

2
hidden states.

3.2 Time Series Pattern Integration via
Convolutional Fusion Framework

The key idea of convolutional fusion is to fuse the dynamic temporal

patterns (with different resolutions) captured by the above recurrent

framework for the final prediction. In particular, we integrate the

embedding vectors learned from each individual recurrent encoder

into a new conclusive embedding vector to jointly consider various

time series patterns with different ⟨α , β⟩ configurations.
One common way to combine multiple hidden state vectors is to

directly concatenate them to generate a long vector. Then, we can

capture the non-linear relations by feeding the generated vector into

a Multilayer Perceptron (MLP). However, simply concatenating em-

bedding vectors cannot capture their resolution-aware interactions

as discussed in [9]. Another way to solve the data fusion problem is

to employ an attention mechanism in different time series patterns.

However, fusing different temporal patterns through a weighted

summation fails to capture the high level insights extracted from

temporal patterns in time series data [42]. In the process of time

series pattern integration, while the learned sequential patterns

with different time resolutions can help identify the temporal de-

pendency in time series data, they often do not directly contribute

to the final prediction due to the hierarchical interdependent rela-

tions (e.g., support or mutually exclusive relationships) between

temporal patterns with different time resolutions. Ignorance of

such hierarchical interdependent relations will significantly impact

performance as shown in our experiments.

Recently, Convolutional Neural Networks (CNN) have been ap-

plied to many natural language processing tasks to model the hier-

archical relationships among words and have achieved high per-

formance on a variety of tasks [15, 20]. Inspired by these recent ad-

vances, we propose a convolutional fusion framework to summarize

a multi-resolution tensor R ∈ R |α |× |β |×ds
into a conclusive repre-

sentation. Here we use R to represent a collection of time-evolving

patterns generated frommultiple time resolutions. Namely, Ri, j,1:ds
denotes a learned sequence pattern representation h

αi ,βj
t at time t

w.r.t. temporal resolution αi and interval resolution βj as described
in Eq. 2. We further apply a mirror padding along the diagonal

to complete the tensor. The generation process of R is shown in

Figure 1.(b).

Figure 1.(c) demonstrates the CNN fusion process. For each con-

volution layer in our network, we employ a filter w ∈ Rli×lj×ds

to perform the convolution operation on i × j embedding vectors.

In particular, this operation is performed based on the resolution

position relations in terms of time interval granularity. Formally,

the convolution operator is given as follows:

Rn+1i, j,k = f
(
wn+1
k · Rn

(i :i+li , j :j+lj ,1:ds)
+ bn+1k

)
(3)

where bk ∈ R is a bias term and f is some activation function,

n denotes the index of convolutional layer. We also apply Batch

Normalization [13] and Dropout [37] after each convolution layer.

Lastly, we flatten the resulting tensor to generate the final conclu-

sive representation h.
After obtain the representation h of the current time step, we

feed the reshaped one dimensional conclusive embedding vector

into the Multilayer Perceptron (MLP) component and derive the

targeted value (the occurrence probability for categorical value

prediction). Formally, we represent MLP as follows:

L1 =ϕ(W1h + b1)

· · ·

LdL =ϕ(WdLLdL−1 + bdL)

x̂t =σ (WxLdL + bx) (4)

where dL represents the number of hidden layers in MLP. ϕ,W∗ and

b∗ represent the ReLU activation function, weight matrix and bias

vector of each MLP layer respectively. We further apply sigmoid
(denoted as σ) to output the predicted probability. For simplicity,

we denote Equation 4 as x̂t = MLP(ht ,dL). In the experiments, we

set the number of layers dL in MLP as 2.

3.3 Learning Process
This work proposes a general framework which can be applied to a

variety of prediction tasks, including regression and classification,

on different types of time series (i.e., numeric and categorical values).

To solve different types of forecasting tasks, it is necessary to specify

different loss functions accordingly. A commonly used metric for

regression tasks is mean-squared-error (MSE) [30]. Hence we define
our loss function for continuous time series prediction as:

L =
∑
i,t

| |xi,t − x̂i,t | |
2

2
(5)

where xi,t and x̂i,t denote the actual and estimated data value of

the i-th time series in t-th time interval, respectively.

In addition, to be consistent with the our experiment, we simplify

the categorical value prediction task as binary cases and employ

cross entropy [28] in the objective function. Therefore, we define

our loss function for categorical value prediction as:

L = −
∑
i,t

xi,t log(x̂i,t) + (1 − xi,t) log(1 − x̂i,t) (6)

where x̂i,t denotes the estimated probability that the data point

of the i-th time series in t-th time interval. Furthermore, xi,t = 1

if the data point of the i-th time series in t-th time interval is 1,

left as 0 otherwise. The parameters of RESTFul can be achieved by

minimizing the loss function in Eq. 5 and Eq. 6, corresponding to

the specific type of forecasting task.

4 EVALUATION
We demonstrate the effectiveness of the proposed RESTFul on vari-

ous numerical and categorical real-world datasets. In particular, we

aim to answer the following research questions:

• Q1: How does our RESTFul model perform compared to the state-

of-the-art time series forecasting models on numerical data?

• Q2: How does our RESTFulmodel work for time series forecasting

on categorical values compared to baselines?

• Q3: Does RESTFul consistently outperform other baselines in

terms of prediction accuracy on three tasks w.r.t different time

windows with different training and testing time periods?

• Q4: How is the performance of RESTFul’s variants with different

combinations in the joint framework?

• Q5: How do the key model hyper-parameters impact RESTFul’s
performance?

• Q6: How do the number of time resolutions impact RESTFul’s
performance?

• Q7: Whether the selection of recurrent unit in RESTFul influence
the model performance?

4.1 Experimental Setup
4.1.1 Data. In our evaluation, we perform experiments on two

types of time series data (i.e., numerical and categorical data) to

evaluate the performance of RESTFul for the aforementioned tasks:

(i) sales volume prediction on Rossmann store sales data
1
; (ii)

temporal link prediction on Enron email data
2
; (iii) urban complaint

prediction on 311 service data
3
.

(i)Rossmann Store Sales Data. This dataset contains 336, 808 sale
records for the Rossman drug-store chain in Germany, collected

from daily sales across 1, 115 stores. We utilize sales data from

Jun, 2014 to Jun, 2015. The format of each sales log is: (store id, the

turnover, timestamp). Hence, for each store i , we can generate a time

series Xi in which each element xi,t is the turnover (quantitative
value) of store i in t-th time step. Time step granularity is at the

daily level in this dataset.

(ii) Enron Email Data. This email dataset was constructed by the

CALO Project [22] to reflect 1, 153, 562 email communications of

150 users for understanding how an email system is used. We em-

ploy data spanning Jan, 2001 and Dec, 2001 in our evaluation. In

this dataset, there exist 148, 805 user pairs and each email commu-

nication is recorded with the format of (source user id, target user

id, timestamp). In particular, a link (i, j, t) is generated when user i
sends an email to user j in t-th time step or vice versa. We generate

a time series (e.g., Xi, j) for each pair of users (e.g., user i and j) to
represent if they have a daily communication or not. Each element

xi, j,t in Xi, j is set to 1 if link (i, j, t) or (j, i, t) exists in the dataset

and 0 otherwise.

(iii) Urban Complaint Data. This dataset is collected from 311

non-emergency services from in New York City which document

people complaints of different categories (e.g., noise and blocked

driveway). Each reported complaint record is in the format of (com-

plaint category, latitude, longitude, timestamp). The urban com-

plaint dataset contains 204, 333 records and was collected from

Jan to Dec, 2014. In the experiments, we first map the coordinates

into 863 disjointed geographical regions according to road network

information in NYC [40]. Given a particular region and complaint

category, we generate a time series Xi, j by setting each element

xi, j,t = 1 if there exists category j-th complaints reported from

this region in the t-th day and xi, j,t = 0 otherwise. In this evalua-

tion, we focus on 4 key complaint categories (e.g., Noise, Blocked

Driveway, Illegal Parking and Building Use) studied in [12].

For all the above time series datasets, the interval and temporal

resolutions are set as {day,week,month} in the evaluation.

1
https://www.kaggle.com/c/rossmann-store-sales

2
https://www.cs.cmu.edu/ẽnron/

3
https://opendata.cityofnewyork.us/

4.1.2 Reproducibility andParameter Settings. The hyper-parameters

play important roles in the RESTFul framework, as they determine

how the model will be trained. We summarize the parameter set-

tings of RESTFul in Table 1. In our evaluation, we investigate how

the different choices of parameters affect the performance of REST-
Ful by changing the tested parameter and fixing others as the default

values. We implemented RESTFul using TensorFlow and Adam [21]

to learn the parameters. We utilize the grid search method to opti-

mize the hyperparameter settings in our experiments. In addition,

we set α , β ∈ {day,week,month}. The source code of RESTFul is
publicly available

4
.

Table 1: Parameter Settings

Parameter Value Parameter Value

Hidden State Dimension 16 # of Time Steps 6

of MLP Layers 2 Filter Size 2

of Convolutional Layers 2 Dropout Ratio 0.5

BN Scale Parameter 0.99 BN Shift Parameter 0.001

Batch Size 64 Learning Rate 0.001

4.1.3 Baselines. In our evaluation, we consider three types of

baselines: (i) conventional time series forecasting methods (i.e.,
ARIMA and SVR); (ii) variants of Recurrent Neural Network models

for time series predicitve analytics (i.e., GRU, Dipole, Deep-GRU,
DA-RNN); (iii) traditional neural network models (i.e., MLP).

• SupportVectorRegression (SVR) [5]: a non-parametricmethod

for regression task based on kernel functions.

• Auto-Regressive IntegratedMovingAverage (ARIMA) [19]:
It is a well-known time series prediction model for understanding

and predicting future values in a time series. We also explore the

seasonal ARIMA (SARIMA) by setting season length as day or

week. Due to its similar performance to ARIMA, we only report

the evaluation results of ARIMA.

• Multilayer Perceptron (MLP) [17]: It is a feed-forward artifi-

cial neural network which uses a nonlinear activation function

in the learning process.

• Gated Recurrent Neural Networks (GRU) [7]: It is a gating
mechanism in recurrent neural networks which has fewer pa-

rameters than LSTM by lacking an output gate to achieve com-

putational efficiency. We use the hidden states generated by GRU

to predict future time steps based on cross entropy.

• StackedGated Recurrent Framework (Deep-GRU) [43]: It is
a stacked recurrent framework in which the output of each step is

generated by a set of connected GRUs instead of a single unit. This

improves the basic GRU model by increasing the model depth

but still accepts a single time resolution as input. To be consistent

with the number of parameters of our proposed RESTFul, we set
the number of stacked GRU layers as 6.

• Attention-basedBidirectionalRecurrentNeuralNetworks
(Dipole) [27]: This method further extends the basic GRU by ap-

plying bidirectional GRUs and employs an attention mechanism

to interpret the relations between the current and past values.

• Dual-stageAttention-basedRecurrentNeuralNetwork (DA-
RNN) [34]: It is a state-of-the-art time series forecasting method

4
https://bitbucket.org/xianwu9/restful

which consists of an encoder with an input attention mechanism

and a decoder with a temporal attention mechanism.

In our experiments, we keep the number of time steps consis-

tent for all compared algorithms. All neural network models (e.g..,
MLP, DA-RNN, GRU, Dipole, Deep-GRU) are trained using Adam

optimizer. SVR and ARIMA/SARIMA are implemented based on

the statsmodels library [36]. Furthermore, based on the parameter

settings reported in their individual work, we also optimize the

parameter settings of all baselines using grid search strategy and

their best performance are reported in the evaluation results.

4.1.4 Evaluation Protocols. Here, we summarize the evaluation

metrics used in two types of tasks (i.e., numerical value forecasting

and categorical value forecasting) as follows.

• Forecasting on Numerical Values. To evaluate the perfor-

mance of all compared methods in predicting quantitative sales

volume (posed as a regression problem), we use Mean Absolute
Error (MAE), Root Mean Square Error (RMSE) and Root Mean
Square Percentage Error (RMSPE) which have been widely used

in the tasks of predicting quantitative values [10, 31]. Formally,

the mathematical definitions of those metrics are presented as

follows: MAE = 1

N
∑N
i=1 |yi − ŷi |, RMSE =

√
1

N
∑N
i=1(yi − ŷi)2,

RMSPE =
√

1

N
∑N
i=1(

yi−ŷi
yi)2, where yi and ŷi represents the

actual sales volume and estimated one, respectively. Note that

MAE, RMSE and RMSPE scores are the lower the better.

• Forecasting on Categorical Values. To validate the perfor-

mance of each method in predicting link or urban compliant

existence (posed as classification problem), we use Precision, Re-
call, F1-score (trade-off between precision and recall) and AUC as

evaluation metrics [18]. A larger Precision, Recall, F1 and AUC

value signals better performance.

For time series forecasting on numerical and categorical data,

we split the datasets chronologically into training (7.5 months), val-

idation (0.5 month) and test (1 month) sets. The validation datasets

are used to tune hyper-parameters and test datasets are used to

evaluate the final performance of all compared algorithms. All pre-

diction experiments are conducted across the consecutive days in

the test data and the average performance is reported.

4.2 Performance Comparison on Numerical
Time Series Data Forecasting (Q1 and Q3)

We now compare RESTFul with state-of-the-art methods in predict-

ing the sales volume on Rossmann sales data. Table 2 shows the

prediction accuracy of all compared methods from Feb to Jun. From

Table 2, we have the following main observations:

(i) The proposed RESTFul achieves the lowest MAE, RMSE and

RMPSE scores and achieves significant improvements over other

methods in all cases. In particular, the average improvements of

RESTFul over different best performed baselines range from 42.1%

to 68.6% in terms of RMSPE. We believe the benefits are credited

to the effective design of the conventional fusion architecture in

RESTFul–automatically capturing the importance of time-evolving

dependencies between resolution-aware time-ordered sequences.

(ii) Among the baselines, there is no obvious winner between differ-

ent gated recurrent frameworks, which suggests the weak effect in

modeling the temporal dynamics in numeric time series data with

various gated recurrent models and the attention mechanism (i.e.,
GRU, Dipole and DA-RNN). In contrast, the significant improve-

ments on prediction accuracy of RESTFul confirms our assumption

in Section 2–by providing various time series inputs with differ-

ent temporal resolutions which capture multiple time-evolving

dependencies from different periodic patterns, this information can

improve forecasting future values. Furthermore, we observe that

RESTFul outperforms Deep-GRU which uses the same recurrent

framework with similar number of parameters, further admitting

the effectiveness of modeling the multi-resolution-aware temporal

patterns for time series forecasting.

(iii) We observe that RESTFul consistently outperforms other base-

lines over different time frames (i.e., from Feb to Jun), suggesting

that RESTFul is capable of handing temporal dynamics maintained

by month and season variation (e.g., Feb–Winter; Mar, Apr–Spring;

May, Jun-Summer).

4.3 Performance Comparison on Categorical
Time Series Data Forecasting (Q2 and Q3)

For the binary time series value prediction task, we report the exper-

imental results in Table 3 and Table 4 corresponding to the temporal

link prediction and complaint prediction tasks, respectively. From

the evaluation results, we note the following key observations:

(i) Table 3 lists the evaluation results in predicting future email

communications on the Enron dataset. We can observe that REST-
Ful performs better than competing methods in most cases in terms

of F1-score and AUC. In particular, RESTFul outperforms its coun-

terpart Dipole with 45.9%–119% relative improvements in terms of

F1 across four different months. The performance gain between

RESTFul and other baselines is relatively stable when varying the

training and testing time windows. The advantage of the proposed

framework lies in its proper consideration and accommodation

of uncertain periodic influence–the existence of multiple types of

dynamic time series patterns with different temporal resolutions.

Additionally, we can observe that RESTFul consistently outperforms

other baselines with respect to different density degrees of time

series data, which suggests that RESTFul is robust to data sparsity.

(ii)We repeat the above experiments on urban complaint data to

predict the future complaints of each region in a city. The evalua-

tion results are presented in Table 4. From this table, we observe

that RESTFul continuously outperforms all compared baselines in

most evaluation metrics. For example, RESTFul outperforms the

best baseline on November in terms of F1-score by 8.8%. In the

occasional cases that RESTFul misses the best performance, it still

achieves competitive results. The evaluation results across different

time frames further validate the effectiveness of RESTFul in model-

ing time-evolving dependencies in time series data with multiple

resolutions and reasonably interpret the importance of different

periodic patterns in predicting future results.

(iii)We observe that RESTFul shows improvement over both con-

ventional time series forecasting techniques (i.e.,) and variants of

Table 2: Performance comparisons of different methods in sales volume prediction in terms ofMAE, RMSE and RMPSE. REST-
Ful achieves the best performance in all cases.

Month February March April May June

Algorithm MAE RMSE RMSPE MAE RMSE RMSPE MAE RMSE RMSPE MAE RMSE RMSPE MAE RMSE RMSPE

SVR 1537 1960 0.396 1427 1861 0.382 2829 3570 0.460 2485 3045 0.375 2977 3608 0.404

ARIMA 1536 2073 0.378 1516 2055 0.287 2283 3007 0.367 1848 2481 0.320 2050 2865 0.338

ANN 1096 1496 0.401 1091 1711 0.240 1408 2030 0.338 1212 1685 0.272 1258 1928 0.259

GRU 1029 1571 0.398 1002 1597 0.243 1382 2041 0.336 1194 1604 0.275 1272 1919 0.262

Deep-GRU 1071 1568 0.405 989 1582 0.239 1356 1969 0.330 1184 1632 0.273 1233 1905 0.261

Dipole 1098 1554 0.403 1030 1658 0.234 1371 2002 0.340 1167 1626 0.277 1232 1839 0.265

DA-RNN 1066 1563 0.421 988 1554 0.238 1281 1897 0.333 1116 1557 0.271 1193 1855 0.258

RESTFul 797 1170 0.249 767 1198 0.164 1180 1629 0.199 882 1315 0.190 888 1312 0.153

recurrent neural network models (i.e., GRU, Dipole, Deep-GRU,

DA-RNN). The large performance gap between RESTFul and con-

ventional time series prediction approaches indicates the limitation

of those methods by assuming a fixed temporal pattern of across the

time series. Additionally, although the variants of recurrent neural

network models are developed to capture the dynamic sequential

patterns in time series data, the performance gap between RESTFul
and those baselines stems from the fact that the time-varying dis-

tribution of future time series data might be relevant to different

temporal patterns with different resolutions.

4.4 Evaluations on Variants of RESTFul (Q4)
We further evaluate the key components of our joint representa-

tion learning model RESTFul to better understand the proposed

framework. We consider several variants with the aim of answering

the following four questions: (i) Does the designed convolutional

neural network fusion architecture play a crucial role in the joint

learning model RESTFul to capture the temporal dynamics in time

series data with different time resolutions? (ii) How is the model

performance when employing an attention mechanism to jointly

consider temporal patterns with different time resolutions? (iii) Is

the consideration of dependencies between time resolutions helpful

for making final predictions? Here we consider three variants of

the proposed method to answer these questions.

• CNN Fusion Architecture (RESTFul-c): A simplified version of

RESTFul which directly concatenate the encoded reprentation

vectors from the recurrent framework to predict the future time

series data, i.e., without employing mirror padding operation

convolutional fusion architecture.

• Attention Mechanism (RESTFul-a): This model utilizes the at-

tention mechanism as the fusion framework to determine the

importance of temporal patterns with different resolutions, i.e.,
replacing the convolutional fusion framework in RESTFul with
an attention mechanism.

• Resolution Dependencies (RESTFul-r): This variant feeds the
temporal patterns with different resolutions into the convolu-

tional framework without considering the inherent dependencies

between resolutions in terms of their time granularity (i.e., day,
week and month), i.e., concatenating all learned embedding vec-

tors generated from the recurrent framework in terms of their

resolution granularity order.

We report the evaluation results on store sales, email commu-

nication and urban complaint data in Figure 2(a), Figure 2(b) and

Figure 2(c), respectively. From these figures, we notice the full

version of our developed framework RESTFul achieves the best

performance in most evaluation metrics across various settings. In

particular, we summarize three key observations:

• (i). RESTFul outperforms RESTFul-c (without mirror padding op-

eration in convolutional fusion framework) in all cases, justifying

the effectiveness of our developed convolutional fusion frame-

work to concatenate the temporal patterns with different time

resolutions to make final predictions.

• (ii). RESTFul outperforms RESTFul-a which utilizes an attention

mechanism in the fusion framework, which further demonstrates

the efficacy of our convolutional fusion framework in concluding

the multiple resolution-aware temporal patterns via a hierarchi-

cal fusion process, rather than a simple weighted combination.

• (iii). RESTFul achieves better performance than the variant RESTFul-

r that does not consider the inherent dependencies between time

resolutions. This observation suggests the usefulness of RESTFul
in handling the complex inter-dependencies between multiple

resolution-aware time series patterns.

4.5 Parameter Sensitivity Analysis (Q5)
RESTFul involves several key parameters (e.g., hidden state dimen-

sion and input sequence length in the recurrent framework, number

of convolutional layers in the fusion framework). To investigate

the robustness of the RESTFul framework, we examine how the

different choices of parameters affect the performance of RESTFul
in predicting time series data. Except for the parameter being tested,

we set other parameters at the default values (see Table 1).

Figure 3 shows the evaluation results of urban complaint predic-

tion (measured by F1-score) as a function of one selected parameter

when fixing others. First, we notice that model performance be-

comes stable as long as the length of the input sequence is above

6. Second, we observe that the increase of prediction performance

saturates as the dimension of the hidden state reaches 16. In our

experiments, we set this dimension size as 16 due to the balance

between efficacy and computational cost, i.e., the smaller the embed-

ding size is, the more efficient the training process will be. Third, we
observe the low impact of the number of convolutional layers in the

fusion framework. In summary, we observe that hyper-parameters

Table 3: Performance comparisons of different methods in temporal link prediction in terms of AUC, F1-score (F1), Precision
(Prec) and Recall (Rec). s1 and s2 represents the density degree (i.e., the percentage of non-zero elements) of time series in
training and testing, respectively.

Month Sept (s1 = 0.009,s2 = 0.010) Oct (s1 = 0.008,s2 = 0.017) Nov (s1 = 0.008,s2 = 0.013) Dec (s1 = 0.009,s2 = 0.005)

Algorithm AUC F1 Pre Rec AUC F1 Pre Rec AUC F1 Pre Rec AUC F1 Pre Rec

SVR 0.307 0.019 0.401 0.010 0.356 0.021 0.547 0.011 0.391 0.036 0.374 0.019 0.313 0.031 0.287 0.016

ARIMA 0.435 0.099 0.298 0.060 0.478 0.11 0.259 0.07 0.508 0.100 0.255 0.062 0.446 0.083 0.240 0.050

MLP 0.629 0.107 0.066 0.296 0.661 0.140 0.085 0.383 0.659 0.124 0.075 0.371 0.623 0.074 0.043 0.271

GRU 0.623 0.107 0.066 0.296 0.661 0.140 0.085 0.383 0.659 0.124 0.074 0.371 0.623 0.074 0.043 0.271

Deep-GRU 0.629 0.107 0.066 0.296 0.661 0.140 0.085 0.383 0.659 0.124 0.074 0.371 0.623 0.074 0.043 0.270

Dipole 0.664 0.107 0.066 0.296 0.697 0.140 0.085 0.383 0.695 0.165 0.160 0.170 0.648 0.074 0.043 0.271

DA-RNN 0.629 0.107 0.066 0.296 0.661 0.140 0.085 0.383 0.659 0.124 0.074 0.371 0.623 0.074 0.043 0.271

RESTFul 0.833 0.200 0.193 0.207 0.792 0.259 0.315 0.219 0.629 0.246 0.232 0.261 0.810 0.160 0.178 0.146

Table 4: Performance comparisons of different methods in urban complaint prediction.

Month Sept (s1 = 0.139,s1 = 0.162) Oct (s1 = 0.146,s2 = 0.157) Nov (s1 = 0.149,s2 = 0.144) Dec (s1 = 0.153,s2 = 0.137)

Algorithm AUC F1 Pre Rec AUC F1 Pre Rec AUC F1 Pre Rec AUC F1 Pre Rec

SVR 0.704 0.403 0.688 0.285 0.710 0.415 0.664 0.302 0.710 0.412 0.618 0.31 0.709 0.412 0.606 0.312

ARIMA 0.824 0.432 0.633 0.328 0.825 0.431 0.629 0.328 0.819 0.426 0.595 0.331 0.761 0.282 0.537 0.192

MLP 0.792 0.506 0.437 0.601 0.792 0.500 0.437 0.584 0.786 0.475 0.436 0.520 0.784 0.471 0.414 0.546

GRU 0.792 0.505 0.436 0.600 0.792 0.499 0.430 0.594 0.786 0.474 0.422 0.540 0.784 0.471 0.408 0.556

Deep-GRU 0.792 0.505 0.454 0.569 0.792 0.499 0.435 0.585 0.786 0.474 0.454 0.495 0.784 0.471 0.408 0.556

Dipole 0.792 0.506 0.443 0.589 0.792 0.499 0.425 0.605 0.786 0.474 0.415 0.551 0.784 0.471 0.414 0.546

DA-RNN 0.792 0.506 0.431 0.612 0.792 0.500 0.449 0.564 0.786 0.474 0.436 0.519 0.784 0.471 0.415 0.546

RESTFul 0.848 0.545 0.483 0.625 0.848 0.542 0.476 0.629 0.843 0.516 0.465 0.579 0.843 0.507 0.460 0.564

Jan Feb Mar Apr May
0

0.05

0.1

0.15

0.2

0.25

0.3

R
M
PS

E

RESTFul-c
RESTFul-a
RESTFul-r
RESTFul

(a) Sales Volume

Sep Oct Nov Dec
0

0.05

0.1

0.15

0.2

0.25

F1
-s
co
re

RESTFul-c
RESTFul-a
RESTFul-r
RESTFul

(b) Email Communication

Sep Oct Nov Dec
0.4

0.45

0.5

0.55

0.6

F1
-s
co
re

RESTFul-c
RESTFul-a
RESTFul-r
RESTFul

(c) Urban Complaint

Figure 2: Evaluation on the variants of RESTFul.

have a relatively low impact on the performance of RESTFul, which
demonstrates the robustness of the RESTFul framework. We also

perform experiments to examine the parameter sensitivity of REST-
Ful in both sales volume prediction and urban complaint forecasting

tasks where similar results were observed. Considering the space

limit, we did not include them in this paper.

4.6 Effect of Resolution Configurations (Q6)
To investigate the effect of the time granularity that we used to

generate time series data, we study the performance of our RESTFul
framework with different resolution configurations, i.e., (i) RESTFul-
2: α , β ∈ {day,week}; (ii) RESTFul-3: α , β ∈ {day,week,month}.
We perform experiments on three time series forecasting tasks

on both numerical and categorical data. The evaluation results

are shown in Table 5. In this table, we can observe that RESTFul-
3 outperforms RESTFul-2 in most cases, which suggests that the

consideration of more fine-grained time resolutions is helpful for

capturing the multiple temporal patterns.

4.7 Effect of Recurrent Unit Selection (Q7)
In our experiments, we further investigate the effect of recurrent

unit selection in model performance of different time series forecast-

ing tasks. In particular, we use (RESTFul-RNN) and (RESTFul-LSTM)
to represent two variants which utilizes RNN/LSTM as the basic

recurrent unit to encode the time series data with temporal dy-

namics in the developed hierarchical model, i.e., using RNN/LSTM

as the recurrent unit in RESTFul rather than GRU. The evaluation

results are presented in Figure 4. From these figures, we can observe

1 2 3 4 5 6 7 8 9 10

45

50

55

60

65

70

75

80

85

90

of Time Steps

P
e
r
c
e
n
t
%

F1

AUC

1 2 3 4

45

50

55

60

65

70

75

80

85

90

of Conv. Layers

P
e
r
c
e
n
t
%

F1

AUC

5 10 15 20 25 30 35 40 45 50 55 60

45

50

55

60

65

70

75

80

85

90

of Hidden State Dimension.

P
e
r
c
e
n
t
%

F1

AUC

1 2 3 4 5 6 7

45

50

55

60

65

70

75

80

85

90

of MLP Layers

P
e
r
c
e
n
t
%

F1

AUC

Figure 3: Parameter sensitivity of RESTFul.

Table 5: Performance investigation of RESTFul with differ-
ent resolution configurations.

Data Source Metric RESTFul-2 RESTFul-3

MAE 812 797

Sales Volume RMSE 1173 1170

RMSPE 0.251 0.249

AUC 0.678 0.832

Email F1-score 0.206 0.207

Communication Precision 0.236 0.208

Recall 0.182 0.206

AUC 0.840 0.848

Urban Complaint F1-score 0.537 0.545

Precision 0.474 0.483

Recall 0.618 0.625

Jan Feb Mar Apr May
0

0.05

0.1

0.15

0.2

0.25

0.3

R
M
PS

E

RESTFul-RNN
RESTFul-LSTM
RESTFul

(a) Sales Volume

Sep Oct Nov Dec
0

0.05

0.1

0.15

0.2

0.25

F1
-s
co
re

RESTFul-RNN
RESTFul-LSTM
RESTFul

(b) Email Communication

Sep Oct Nov Dec
0.4

0.45

0.5

0.55

0.6

F1
-s
co
re

RESTFul-RNN
RESTFul-LSTM
RESTFul

(c) Urban Complaint

Figure 4: Effect investigation of recurrent unit selection in
RESTFul.

that RESTFul achieves better performance than both RESTFul-RNN

(with RNN unit) and RESTFul-LSTM (with LSTM unit) in most cases.

We chose GRU in our RESTFul framework for jointly considering

both computational efficiency and prediction accuracy.

4.8 Case Study
In addition to the above quantitative analysis on sales prediction

results, we further randomly select a predicted time-ordered sales

sequence with ground truth information and plot the predicted

numerical values of our approach RESTFul and other representative
baselines (i.e., ARIMA → representative time series forecasting

01
-1
5-
20
15

01
-2
0-
20
15

01
-2
5-
20
15

01
-3
0-
20
15

02
-0
4-
20
15

02
-0
9-
20
15

02
-1
4-
20
15

02
-1
9-
20
15

02
-2
4-
20
15

0.6

0.8

1

1.2

·104

S
a
l
e
s
V
o
l
u
m
e

Ground Truth ARIMA DA-RNN RESTFul

Figure 5: Case Study of Sales Forecasting.

technique and DA-RNN→ best performed baseline from state-of-

the-arts).

For comparison, we visualize the prediction results of our REST-
Ful and other representative baselines over Rossmann store sales

data in Figure 5. In this figure, x-axis represents the time slot index

and y-axis is the sales volume. We can observe that RESTFul is able
to capture both the sharp peak and drop of the sale sequence, while

a significant delay can be observed for other baselines. This study

further justifies that RESTFul can correctly predict the time series

data with resolution-aware highly dynamic patterns.

5 RELATEDWORK
Time-series Forecasting. Our work is related to recent research

with a focus on modeling time series data using different tech-

niques [8, 16, 23, 27, 29, 34, 38]. Specifically, Ma et al. modeled

patient visit information in a time-ordered and reverse time-ordered

way via attention-based bidirectional recurrent neural networks [27].

Furthermore, in [38], a hybrid framework, which integrates a con-

volution neural network and recurrent neural network, was de-

veloped for language sequence modeling. Laptev et al. proposed
a LSTM-based architecture for special event forecasting at Uber.

using heterogeneous time-series data [23]. This paper differs from

the methods in the above work by proposing a multi-resolution

time-ordered sequence prediction model that jointly explores se-

quential patterns from different time resolutions.

Multiple Resolution Techniques.Multiple resolution methods

have been successfully used in many tasks in data mining and com-

puter vision [2, 6, 14, 26, 45]. Specifically, Buevich et al. developed
a multi-resolution datastore to pre-processes incoming data on em-

bedded leaf nodes [2]. Jiang et al. proposed an integrated event

summarization approach to facilitate the multi-resolution analysis

of the events [14]. In addition, a framework has been proposed for

multi-resolution spatial event forecasting [45]. Cetin et al. applied
multi-resolution indexing for image analysis [26]. To the best of

our knowledge, we are the first to address the time-series predic-

tion problem with multiple time resolutions by employing neural

network techniques.

Time-stamped Data Analytics. Our work is also related with the
research work which focus on mining time-stamped data [3, 11, 24,

41, 44, 46]. For example, Cao et al. developed a GRU-based model

with a multi-view machine layer to predict time-stamped mood

scores [3]. Hu et al. proposed to forecast a future sub-event with a

hierarchical long short-term memory architecture which encodes

text information embedded in event sequences [11]. Additionally,

Zheng et al. developed a framework to infer air quality in a city

by leveraging various urban data (e.g., meteorological data and

taxi trajectories) [46]. Li et al. aimed to identify the relationships

between mood and weather data across time [24]. Note that these

abovemethods are proposed for specific domains which incorporate

various contextual features in their framework. Different from those

work, our method is a general framework which lays out a solid

analytical foundation to explore resolution-aware temporal patterns

for forecasting behavioral time series data.

6 CONCLUSION
In this paper, we studied the behavioral time series forecasting

problem with multiple time resolutions. We proposed an effective

framework for allowing different resolution-aware temporal pat-

terns to collaborate with each other and summarize a conclusive

time series pattern across different resolutions. We evaluated the

performance of our proposed approach on three real-world behav-

ioral time series datasets with multiple resolutions. Experimental

results on various time series forecasting tasks demonstrated the

effectiveness of our RESTFul framework.

ACKNOWLEDGMENTS
This work is supported by the Army Research Laboratory under Co-

operative Agreement Number W911NF-09-2-0053, and NSF Grants

IIS-1447795 and CNS-1622914

REFERENCES
[1] Anthony Bagnall, Jason Lines, Jon Hills, and Aaron Bostrom. 2015. Time-series

classification with COTE: the collective of transformation-based ensembles. IEEE
Transactions on Knowledge and Data Engineering 27, 9 (2015), 2522–2535.

[2] Maxim Buevich, Anne Wright, Randy Sargent, and Anthony Rowe. 2013.

Respawn: A distributed multi-resolution time-series datastore. In RTSS. IEEE,
288–297.

[3] Bokai Cao, Lei Zheng, Chenwei Zhang, Philip S Yu, Andrea Piscitello, John

Zulueta, Olu Ajilore, Kelly Ryan, and Alex D Leow. 2017. DeepMood: Modeling

Mobile Phone Typing Dynamics for Mood Detection. In KDD. ACM, 747–755.

[4] Li-Juan Cao and Francis Eng Hock Tay. 2003. Support vector machine with

adaptive parameters in financial time series forecasting. IEEE Transactions on
Neural Networks (TNN) 14, 6 (2003), 1506–1518.

[5] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a library for support vector

machines. TIST 2, 3 (2011), 27.

[6] Dehua Cheng, Mohammad Taha Bahadori, and Yan Liu. 2014. FBLG: a simple

and effective approach for temporal dependence discovery from time series data.

In KDD. ACM, 382–391.

[7] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.

Empirical evaluation of gated recurrent neural networks on sequence modeling.

arXiv preprint arXiv:1412.3555 (2014).
[8] Dingxiong Deng, Cyrus Shahabi, Ugur Demiryurek, Linhong Zhu, Rose Yu, and

Yan Liu. 2016. Latent space model for road networks to predict time-varying

traffic. In KDD. ACM, 1525–1534.

[9] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.

2017. Neural collaborative filtering. In WWW. World Wide Web Conferences

Steering Committee, 173–182.

[10] Tracey Hollings, Andrew Robinson, Mary van Andel, Chris Jewell, and Mark

Burgman. 2017. Species distribution models: A comparison of statistical ap-

proaches for livestock and disease epidemics. PloS one 12, 8 (2017).
[11] Linmei Hu, Juanzi Li, Liqiang Nie, Xiao-Li Li, and Chao Shao. 2017. What Happens

Next? Future Subevent Prediction Using Contextual Hierarchical LSTM.. In AAAI.
3450–3456.

[12] Chao Huang, Xian Wu, and Dong Wang. 2016. Crowdsourcing-based urban

anomaly prediction system for smart cities. In CIKM. ACM, 1969–1972.

[13] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In ICML. 448–456.
[14] Yexi Jiang, Chang-Shing Perng, and Tao Li. 2014. META: Multi-resolution Frame-

work for Event Summarization. In SDM. SIAM, 605–613.

[15] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional

neural network for modelling sentences. arXiv preprint arXiv:1404.2188 (2014).

[16] David C Kale, Dian Gong, Zhengping Che, Yan Liu, Gerard Medioni, Randall

Wetzel, and Patrick Ross. 2014. An examination of multivariate time series

hashing with applications to health care. In ICDM. IEEE, 260–269.

[17] Dulakshi SK Karunasinghe and Shie-Yui Liong. 2006. Chaotic time series predic-

tion with a global model: Artificial neural network. Journal of Hydrology 323,

1-4 (2006), 92–105.

[18] David Kempe, Jon Kleinberg, and Amit Kumar. 2002. Connectivity and inference

problems for temporal networks. J. Comput. System Sci. 64, 4 (2002), 820–842.
[19] Mehdi Khashei, Mehdi Bijari, and Gholam Ali Raissi Ardali. 2009. Improvement of

auto-regressive integrated moving average models using fuzzy logic and artificial

neural networks (ANNs). Neurocomputing 72, 4-6 (2009), 956–967.

[20] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[21] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980 (2014).
[22] Bryan Klimt and Yiming Yang. 2004. The enron corpus: A new dataset for email

classification research. ECML (2004), 217–226.

[23] Nikolay Laptev, Jason Yosinski, Li Erran Li, and Slawek Smyl. 2017. Time-series

extreme event forecasting with neural networks at uber. In ICML.
[24] Jiwei Li, Xun Wang, and Eduard Hovy. 2014. What a nasty day: Exploring

mood-weather relationship from twitter. In CIKM. ACM, 1309–1318.

[25] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. 2003. A symbolic

representation of time series, with implications for streaming algorithms. In

SIGMOD Workshop. ACM, 2–11.

[26] Vebjorn Ljosa, Arnab Bhattacharya, and Ambuj K Singh. 2006. LB-index: A

multi-resolution index structure for images. In ICDE. IEEE, 144–144.
[27] Fenglong Ma, Radha Chitta, Jing Zhou, Quanzeng You, Tong Sun, and Jing Gao.

2017. Dipole: Diagnosis prediction in healthcare via attention-based bidirectional

recurrent neural networks. In KDD. ACM, 1903–1911.

[28] Shie Mannor, Reuven Y Rubinstein, and Yohai Gat. 2003. The cross entropy

method for fast policy search. In ICML. 512–519.
[29] Yasuko Matsubara and Yasushi Sakurai. 2016. Regime shifts in streams: Real-time

forecasting of co-evolving time sequences. In KDD. ACM, 1045–1054.

[30] Gang Niu, Wittawat Jitkrittum, Bo Dai, Hirotaka Hachiya, and Masashi Sugiyama.

2013. Squared-loss mutual information regularization: A novel information-

theoretic approach to semi-supervised learning. In ICML. 10–18.
[31] Richard J Oentaryo, Ee-Peng Lim, Jia-Wei Low, David Lo, and Michael Finegold.

2014. Predicting response in mobile advertising with hierarchical importance-

aware factorization machine. In WSDM. ACM, 123–132.

[32] Ping-Feng Pai and Chih-Sheng Lin. 2005. A hybrid ARIMA and support vector

machines model in stock price forecasting. Omega 33, 6 (2005), 497–505.
[33] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. 2005. Streaming

pattern discovery in multiple time-series. In VLDB. VLDB Endowment, 697–708.

[34] Yao Qin, Dongjin Song, Haifeng Cheng, Wei Cheng, Guofei Jiang, and Garrison

Cottrell. 2017. A dual-stage attention-based recurrent neural network for time

series prediction. IJCAI (2017).
[35] Chotirat Ann Ralanamahatana, Jessica Lin, Dimitrios Gunopulos, Eamonn Keogh,

Michail Vlachos, and Gautam Das. 2005. Mining time series data. In Data mining
and knowledge discovery handbook. Springer, 1069–1103.

[36] Skipper Seabold and Josef Perktold. 2010. Statsmodels: Econometric and statistical

modeling with python. In Python in Science Conference, Vol. 57. SciPy society

Austin, 61.

[37] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from

overfitting. JMLR 15, 1 (2014), 1929–1958.

[38] Chenglong Wang, Feijun Jiang, and Hongxia Yang. 2017. A Hybrid Framework

for Text Modeling with Convolutional RNN. In KDD. ACM, 2061–2069.

[39] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.

2017. Recurrent recommender networks. In WSDM. ACM, 495–503.

[40] Xian Wu, Yuxiao Dong, Chao Huang, Jian Xu, Dong Wang, and Nitesh V Chawla.

2017. UAPD: Predicting Urban Anomalies from Spatial-Temporal Data. In

ECML/PKDD. Springer, 622–638.
[41] Xian Wu, Yuxiao Dong, Baoxu Shi, Ananthram Swami, and Nitesh V Chawla.

2018. Who will Attend This Event Together? Event Attendance Prediction via

Deep LSTM Networks. In SDM. SIAM, 180–188.

[42] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell:

Neural image caption generation with visual attention. In ICML. 2048–2057.
[43] Rose Yu, Yaguang Li, Cyrus Shahabi, Ugur Demiryurek, and Yan Liu. 2017. Deep

learning: A generic approach for extreme condition traffic forecasting. In SDM.

SIAM, 777–785.

[44] Xuchao Zhang, Liang Zhao, Arnold P Boedihardjo, Chang-Tien Lu, and Naren

Ramakrishnan. 2017. Spatiotemporal Event Forecasting from Incomplete Hyper-

local Price Data. In CIKM. ACM, 507–516.

[45] Liang Zhao, Feng Chen, Chang-Tien Lu, and Naren Ramakrishnan. 2016. Multi-

resolution Spatial Event Forecasting in Social Media. In ICDM. IEEE, 689–698.

[46] Yu Zheng, Furui Liu, and Hsun-Ping Hsieh. 2013. U-air: When urban air quality

inference meets big data. In KDD. ACM, 1436–1444.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 RESTFul: Resolution-Aware Time Series Forecasting Framework
	3.1 Modeling Temporal Dynamics via Recurrent Framework
	3.2 Time Series Pattern Integration via Convolutional Fusion Framework
	3.3 Learning Process

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance Comparison on Numerical Time Series Data Forecasting (Q1 and Q3)
	4.3 Performance Comparison on Categorical Time Series Data Forecasting (Q2 and Q3)
	4.4 Evaluations on Variants of RESTFul (Q4)
	4.5 Parameter Sensitivity Analysis (Q5)
	4.6 Effect of Resolution Configurations (Q6)
	4.7 Effect of Recurrent Unit Selection (Q7)
	4.8 Case Study

	5 Related Work
	6 Conclusion
	References

