
EvoKG: Jointly Modeling Event Time and Network Structure for
Reasoning over Temporal Knowledge Graphs

Namyong Park
1
, Fuchen Liu

2
, Purvanshi Mehta

2
, Dana Cristofor

2
, Christos Faloutsos

1
, Yuxiao Dong

2

{namyongp,christos}@cs.cmu.edu,{fuchen.liu,purvmehta,danac}@microsoft.com,ericdongyx@gmail.com

1
Carnegie Mellon University,

2
Microsoft

ABSTRACT
How can we perform knowledge reasoning over temporal knowl-

edge graphs (TKGs)? TKGs represent facts about entities and their

relations, where each fact is associated with a timestamp. Reasoning

over TKGs, i.e., inferring new facts from time-evolving KGs, is cru-

cial for many applications to provide intelligent services. However,

despite the prevalence of real-world data that can be represented

as TKGs, most methods focus on reasoning over static knowledge

graphs, or cannot predict future events. In this paper, we present

a problem formulation that unifies the two major problems that

need to be addressed for an effective reasoning over TKGs, namely,

modeling the event time and the evolving network structure. Our

proposed method EvoKG jointly models both tasks in an effective

framework, which captures the ever-changing structural and tem-

poral dynamics in TKGs via recurrent event modeling, and models

the interactions between entities based on the temporal neighbor-

hood aggregation framework. Further, EvoKG achieves an accurate

modeling of event time, using flexible and efficient mechanisms

based on neural density estimation. Experiments show that EvoKG

outperforms existing methods in terms of effectiveness (up to 77%
and 116% more accurate time and link prediction) and efficiency.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; Temporal reasoning; Neural networks.

KEYWORDS
temporal knowledge graphs, reasoning over temporal knowledge

graphs, temporal point processes, graph representation learning,

event time prediction, temporal link prediction

ACM Reference Format:
Namyong Park, Fuchen Liu, Purvanshi Mehta, Dana Cristofor, Christos

Faloutsos, Yuxiao Dong. 2022. EvoKG: Jointly Modeling Event Time and

Network Structure for Reasoning over Temporal Knowledge Graphs. In

Proceedings of the Fifteenth ACM International Conference on Web Search and
Data Mining (WSDM ’22), February 21–25, 2022, Tempe, AZ, USA. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3488560.3498451

1 INTRODUCTION
How can we perform knowledge reasoning over knowledge graphs

(KGs) that continuously evolve over time? KGs [16] organize and

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA.
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9132-0/22/02.

https://doi.org/10.1145/3488560.3498451

Figure 1: An example TKG, where we aim to predict tempo-
ral links and event time.
represent facts on various types of entities and their relations. By

facilitating an effective use of prior knowledge represented as a

multi-relational graph, KGs power many important applications,

including question answering, recommender systems, search en-

gines, and natural language processing. Knowledge reasoning over

KGs [3], the process of inferring new knowledge from existing facts

in KGs, lies at the heart of these applications, as KGs are typically

incomplete, with many facts missing.

Importantly, real-world events and facts are often associated

with time (i.e., occurring at a specific time or valid in limited time),

exhibiting complex dynamics among entities and their relations

that evolve over time. Such real-world data (e.g., ICEWS [2] and

GDELT [22]) can be modeled as temporal knowledge graphs (TKGs),

where entities are connected via timestamped edges, and two enti-

ties can have multiple interactions at different time steps, as illus-

trated in Figure 1. Despite the prevalence of real-world data that

can be represented as TKGs, existing methods [6, 34, 39, 47] have

mainly focused on reasoning over static KGs, and lack the ability

to employ rich temporal dynamics available in TKGs.

Recently, a few methods have been developed for reasoning over

TKGs. They mainly address two problem setups, i.e., interpolation

and extrapolation. Given a TKG ranging from time 0 to time 𝑇 ,

methods for the interpolation setup [4, 8, 21] infer missing facts for

time 𝑡 (0 ≤ 𝑡 ≤ 𝑇); on the other hand, those for the extrapolation

setup [17, 41, 42] predict new facts for time 𝑡 > 𝑇 . In this paper, we

focus on the extrapolation setting, which is more challenging and

interesting than the other setting, as forecasting emerging events

are of great importance to many applications of TKG reasoning.

In this paper, we approach the problem of TKG modeling by

defining the joint probability distribution of a TKG as a product of

conditionals, fromwhichwe present a problem formulation that uni-

fies the two problem settings of existing methods, namely, modeling

https://doi.org/10.1145/3488560.3498451

Table 1: EvoKG wins. EvoKG deals with both tasks (T1-
T2) for reasoning over TKGs, while representative baselines
fail to address both. EvoKG also possesses desirable fea-
tures (F1-F3) for modeling TKGs. TD: TA-DistMult [8]. EG:
EvolveGCN [28]. KE: Know-Evolve [41]. RN: RE-Net [17].

TD EG KE RN EvoKG

T1. Modeling evolving network structure ✓ ✓ ✓ ✓

T2. Modeling event time 𝑡 ✓ ✓
• T2-1. Closed-form likelihood& expectation ✓ ✓
• T2-2. Flexible approximation of 𝑝 (𝑡) ✓

F1. Relation-awareness ✓ ✓ ✓ ✓
F2. Neighborhood aggregation ✓ ✓ ✓
F3. Recurrent event modeling ✓ ✓ ✓ ✓ ✓

the event time and evolving network structure. While addressing

both problems leads to learning rich, complementary information

useful for an effective reasoning over TKGs, most methods deal

with only either of the two, as summarized in Table 1.

Therefore, in this work, we develop EvoKG, a method that jointly

addresses these two core tasks for reasoning over TKGs. We design

an effective framework that can be effectively applied to each task,

with only minor adaptations. Our framework performs neighbor-

hood aggregation in a relation- and time-aware manner, and carries

out recurrent event modeling in an autoregressive architecture to

capture the ever-changing structural and temporal dynamics over

time (F1-F3 in Table 1). Importantly, EvoKG tackles the challenging

task of event timemodeling, using flexible and efficient mechanisms

based on neural density estimation (T2-1 and T2-2 in Table 1), which

avoids the limitations of existing methods that the learned distribu-

tions are not expressive, and that the log-likelihood and expectation

of event time cannot be obtained in closed form, but instead require

an approximation. In summary, our contributions are as follows.

• Problem Formulation (Section 2). We present a problem for-

mulation that unifies the two major tasks for TKG reasoning—

modeling the timing of events and evolving network structure.

• Framework (Section 3). We propose EvoKG, an effective and

efficient method for reasoning over TKGs that jointly addresses

the two core problems (T1 and T2 in Table 1).

• Effectiveness (Section 4). Experiments show that EvoKG achieves

up to 116% and 77% better link and event time prediction accuracy,

respectively, than existing KG reasoning methods (Figure 2).

• Efficiency (Section 4). EvoKG efficiently processes concurrent

events, achieving up to 30× and 291× speedup in training and

inference, respectively, compared to the best existing method.

Reproducibility.The code and data used in this paper are available
at https://namyongpark.github.io/evokg.

2 PROBLEM FORMULATION
Notations.A temporal knowledge graph (TKG)𝐺 is amulti-relational,

directed graph with timestamped edges. We denote a timestamped

edge in TKG by a quadruple (𝑠, 𝑟, 𝑜, 𝑡); it represents an event be-

tween subject entity 𝑠 and object entity 𝑜 , occurring at time 𝑡 , where

edge type (also called relation) 𝑟 denotes the corresponding event

type. In a TKG, we assume no duplicate edges, but there can be

multiple edges of the same type between two entities, if they have

different timestamps. For example, a TKG may have both (‘u1’,

‘emailed’, ‘u2’ ‘10 am’) and (‘u1’, ‘emailed’, ‘u2’ ‘12 am’).

Evo
KG

RE-
Net

Kno
w-E

volv
e

Evo
lveG

CN

TA-
Dist

Mul
t

tNod
eEm

bed Con
vE
Dist

Mul
t0

20

40

M
A

E
(T

im
e)

B
et
te
r

−77%

× × × × × ×

ICEWS-500

0.25

0.50

M
R

R
 (L

in
k)

B
et
te
r

+116%
WIKI ICEWS14

Figure 2: EvoKG wins. EvoKG achieves the best link predic-
tion (top) and time prediction (bottom) results. × indicates
that the corresponding method cannot predict event time.

Let (𝑠𝑛, 𝑟𝑛, 𝑜𝑛, 𝑡𝑛) denote an 𝑛-th edge among a set of ordered

edges. Given a TKG 𝐺 with 𝑁 edges sorted in non-decreasing

order of time, we denote it by 𝐺 = {(𝑠𝑛, 𝑟𝑛, 𝑜𝑛, 𝑡𝑛)}𝑁𝑛=1 where

0 ≤ 𝑡1 ≤ 𝑡2 ≤ . . . ≤ 𝑡𝑁 . We use 𝐺𝑡 to denote a TKG consist-

ing of events observed at time 𝑡 , and𝐺<𝑡 to refer to a TKG with all

events observed before time 𝑡 . We use 𝑒 to refer to the event triple

(𝑠, 𝑟, 𝑜). We denote vectors by boldface lowercase letters (e.g., 𝒄),
and matrices by boldface capitals (e.g.,W).

Problem: Modeling a TKG. Given a TKG 𝐺 with a sequence

of observed events {(𝑠𝑛, 𝑟𝑛, 𝑜𝑛, 𝑡𝑛)}𝑁𝑛=1, our goal is to model the

probability distribution 𝑝 (𝐺). We assume that events at time 𝑡

depend on events that occurred prior to time 𝑡 , and events that

happen at the same time are independent of each other, given

preceding events. Based on these assumptions, the joint distribution

of TKG 𝐺 can be written as:

𝑝 (𝐺) =
∏
𝑡

𝑝 (𝐺𝑡 |𝐺<𝑡) =
∏
𝑡

∏
(𝑠,𝑟,𝑜,𝑡) ∈𝐺𝑡

𝑝 (𝑠, 𝑟, 𝑜, 𝑡 |𝐺<𝑡) . (1)

We further decompose the joint conditional probability𝑝 (𝑠, 𝑟, 𝑜, 𝑡 |𝐺<𝑡)
in Equation (1) as follows.

𝑝 (𝑠, 𝑟, 𝑜, 𝑡 |𝐺<𝑡) = 𝑝 (𝑡 |𝑠, 𝑟, 𝑜,𝐺<𝑡) · 𝑝 (𝑠, 𝑟, 𝑜 |𝐺<𝑡) (2)

Note that by modeling the two terms in Equation (2), we model

the event time 𝑝 (𝑡 |𝑠, 𝑟, 𝑜,𝐺<𝑡) and the evolving network structure

𝑝 (𝑠, 𝑟, 𝑜 |𝐺<𝑡). Based on this decomposition, we propose to model a

TKG by estimating these two probability terms.

Surprisingly, existing methods for TKGs have focused on mod-

eling either of the two terms, but not both at the same time, as

summarized in Table 1. Methods that solve only one of the tasks

fail to utilize rich information that can be learned by addressing

the other task: e.g., methods that do not model the event time (e.g.,

those marked with × in Figure 2) cannot predict when events will

occur, and those that only model the event time cannot take the like-

lihood of an event triple (𝑠, 𝑟, 𝑜) into account when estimating the

likelihood of a timestamped event. By unifying these two modeling

tasks, we can enable a more accurate reasoning over TKGs.

3 MODELING A TEMPORAL KNOWLEDGE
GRAPH

We describe how EvoKG models a TKG by addressing the two

problems—modeling event time and evolving network structure.

The symbols used in this paper are listed in Table 2.

https://namyongpark.github.io/evokg

3.1 Modeling Event Time
The temporal patterns of events occurring between various types

of entities in a TKG depend on the context of their past interactions.

To capture intricate temporal dependencies present in real-world

TKGs, we treat the event time 𝑡 as a random variable, and model

the occurrence of triple (𝑠, 𝑟, 𝑜) at time 𝑡 using temporal point

processes (TPPs), which are the dominant paradigm for modeling

events that occur at irregular intervals. Given increasing event

times {. . . , 𝑡𝑛−1, 𝑡𝑛, . . . }, representations in terms of time 𝑡𝑛 and the

corresponding inter-event time 𝜏𝑛 = 𝑡𝑛 − 𝑡𝑛−1 are isomorphic, and

we use them interchangeably.

Conditional Density Estimation of Event Time. To model

the event time, we estimate the conditional probability density

𝑝∗𝑒 (𝑡) = 𝑝 (𝑡 |𝑠, 𝑟, 𝑜,𝐺<𝑡) of event time 𝑡 , given an event of type 𝑟

between entities 𝑠 and 𝑜 , and the history𝐺<𝑡 of all past interactions.

Note that the star symbol ∗ as in 𝑝∗𝑒 (𝑡) in this paper denotes the

dependency on the history 𝐺<𝑡 .

More concretely, in order to define 𝑝∗𝑒 (𝑡), we consider the con-
ditional density of two types of inter-event times 𝜏eo and 𝜏min.

Let 𝑝
∗,𝑒
eo
(𝑡) = 𝑝 (𝜏eo |𝑠, 𝑟, 𝑜,𝐺<𝑡) be the conditional density of 𝜏eo,

which is the time that has elapsed since entities 𝑠 and 𝑜 inter-

acted with each other in their latest event. Also, let 𝑝
∗,𝑒
min
(𝑡) =

𝑝 (𝜏min |𝑠, 𝑟, 𝑜,𝐺<𝑡) be the conditional density of 𝜏min, which is de-

fined to be min(𝜏 (𝑠) , 𝜏 (𝑜)), where 𝜏 (𝑠) and 𝜏 (𝑜) refer to the time

that has elapsed since 𝑠 and 𝑜 interacted with any other entity in

their latest event. In other words, 𝜏eo considers how recent the two

entities’ interaction was, while 𝜏min considers when the most recent

event happened in either entity’s history. In experiments where we

set 𝑝∗𝑒 (𝑡) to be either of these two probabilities, we find 𝑝
∗,𝑒
min
(𝑡) and

𝑝
∗,𝑒
eo
(𝑡) to be most effective for predicting event time (Section 4.2)

and temporal links (Section 4.3), respectively. Note that 𝑝∗𝑒 (𝑡) can be
more generally defined in terms of both conditional densities to be

𝑝∗𝑒 (𝑡) = 𝛼 · 𝑝
∗,𝑒
eo
(𝑡) + (1− 𝛼) · 𝑝∗,𝑒

min
(𝑡), where 𝛼 (0 ≤ 𝛼 ≤ 1) weights

each term, and it can also be extended with further conditional

densities to model different types of inter-event times.

Importantly, our choice to model event time directly via con-

ditional density estimation differs from existing TPP-based ap-

proaches for modeling TKGs [14, 41], where event times are mod-

eled using the conditional intensity function 𝜆∗𝑒 (𝑡)=𝜆(𝑡 |𝑠, 𝑟, 𝑜,𝐺<𝑡),
which represents the rate of events happening, given the history.

In these intensity-based approaches, computing 𝑝∗𝑒 (𝑡) requires in-
tegrating 𝜆∗𝑒 (𝑡), and thus a major challenge lies in selecting a good

parametric form for 𝜆∗𝑒 (𝑡). Simple intensity functions (e.g., constant

and exponential intensity) have a closed-form log-likelihood, but

they usually have limited expressiveness (e.g., they have a uni-

modal distribution); even if they use RNNs to capture rich temporal

information, the resulting distribution 𝑝∗𝑒 (𝑡) still has limited flexi-

bility. More sophisticated ones using neural networks can better

capture complex distributions, but their log-likelihood and expec-

tation cannot be obtained in closed form, requiring Monte Carlo

approximation. Mixture distributions, on the other hand, are an

expressive model for conditional density estimation, with the po-

tential to approximate any density, and with closed-form likelihood

and expectation.

Specifically, we use a mixture of log-normal distributions since

inter-event times are positive. Log-normal mixture distributions are

Table 2: Table of symbols.

Symbol Definition

(𝑠, 𝑟, 𝑜, 𝑡) directed edge from subject 𝑠 to object 𝑜 , with edge type (relation) 𝑟

and timestamp 𝑡

𝑒 event triple (𝑠, 𝑟, 𝑜)
𝜏 inter-event time (i.e., 𝜏𝑛 = 𝑡𝑛 − 𝑡𝑛−1)
𝜏eo elapsed time since entities 𝑠 and 𝑜 last interacted with each other

𝜏min elapsed time since entities 𝑠 and 𝑜 last interacted with any other entity

∗ symbol that signifies that an associated symbol (e.g., 𝑝∗ (𝜏) and t∗
𝑖
)

depends on the past events

𝑝∗𝑒 (𝜏) conditional probability density function 𝑝 (𝜏 |𝑠, 𝑟, 𝑜,𝐺<𝑡)
𝒘, 𝝁,𝝈 weights, means, and standard deviations of a log-normal mixture

t𝑖 , s𝑖 , t∗𝑖 , s
∗
𝑖

temporal (structural) embeddings of entity 𝑖 , with ∗ reflecting its state
after processing events until time 𝑡

t𝑟 , s𝑟 , t∗𝑟 , s∗𝑟 temporal (structural) embeddings of relation 𝑟 , with ∗ reflecting its
state after processing events until time 𝑡

t(ℓ,𝑡)
𝑖

, s(ℓ,𝑡)
𝑖

temporal (structural) embeddings of entity 𝑖 learned by ℓ-th GNN

layer at time 𝑡

t(∗,𝑡)
𝑖

, s(∗,𝑡)
𝑖

temporal (structural) embeddings of entity 𝑖 updated after events until

time 𝑡 are processed

defined in terms of mixture weights𝒘 , means 𝝁, and standard devi-

ations 𝝈 . An important consideration in employing a log-normal

mixture is that the timing of an event in a TKG is affected by what

has happened before (i.e.,𝐺<𝑡) and what comprises the event triple

𝑒 = (𝑠, 𝑟, 𝑜). In light of this, we obtain the three groups of mixture

parameters𝒘∗𝑒 , 𝝁
∗
𝑒 , and 𝝈

∗
𝑒 ∈ R𝐾 , where the symbols 𝑒 and ∗ signify

these parameters’ dependency on the event triple 𝑒 and the history

𝐺<𝑡 , and 𝐾 denotes the number of mixture components.

To obtain mixture parameters, we learn entity and relation em-

beddings such that they reflect their temporal status (which we

describe in the next paragraph), as they are influenced by events

that occurred over time. Let t∗𝑠 , t∗𝑜 , and t∗𝑟 denote such temporal

embeddings of subject 𝑠 , object 𝑜 , and relation 𝑟 , respectively, after

processing events prior to time 𝑡 . We model the conditional depen-

dence of 𝑝 (𝜏 |𝑠, 𝑟, 𝑜,𝐺<𝑡) on 𝑒 = (𝑠, 𝑟, 𝑜) and 𝐺<𝑡 by concatenating

the embeddings of 𝑠 , 𝑟 , and 𝑜 into a context vector 𝒄∗𝑒 = [t∗𝑠 ∥t∗𝑟 ∥t∗𝑜],
and transforming it into the parameters of the log-normal mixture

representing 𝑝 (𝜏 |𝑠, 𝑟, 𝑜,𝐺<𝑡) using a multilayer perceptron (MLP)

as follows:

𝒘∗𝑒 = softmax(MLP(𝒄∗𝑒)), 𝝁∗𝑒 = MLP(𝒄∗𝑒),𝝈∗𝑒 = exp(MLP(𝒄∗𝑒)) (3)

where softmax ensures that mixture weights sum to 1, and exp

makes standard deviations positive. With these parameters, EvoKG

defines 𝑝 (𝜏 |𝑠, 𝑟, 𝑜,𝐺<𝑡) to be

𝑝 (𝜏 |𝑠, 𝑟, 𝑜,𝐺<𝑡) = 𝑝 (𝜏 |𝒘∗𝑒 , 𝝁∗𝑒 ,𝝈∗𝑒)

=

𝐾∑
𝑘=1

(𝑤∗𝑒)𝑘
𝜏 (𝜎∗𝑒)𝑘

√
2𝜋

exp

(
− (log𝜏 − (𝜇

∗
𝑒)𝑘)2

2(𝜎∗𝑒)𝑘 2

)
,

(4)

which is a valid probability density function as it is nonnegative

and integrates to one for 𝜏 ∈ R+.
Time-EvolvingTemporalRepresentations. Informative con-

text for estimating inter-event time can be constructed by summa-

rizing different types of interactions each entity had with others

into temporal entity embeddings. Further, how much time elapsed

since the latest event gives useful information for learning such

temporal representations. To this end, we utilize the neighborhood

aggregation framework of relation-aware graph neural networks

(GNNs). Specifically, we extend R-GCN [34] such that the aggre-

gation can take inter-event time 𝜏𝑖, 𝑗 between entities 𝑖 and 𝑗 into

account. Given concurrent events 𝐺𝑡 , we summarize entity 𝑖’s in-

teraction with others in 𝐺𝑡 as follows:

t(ℓ+1,𝑡)
𝑖

= 𝜎

(∑
𝑟 ∈R

∑
𝑗 ∈N (𝑖,𝑟)𝑡

1

𝜈𝑖, 𝑗
·Wℓ

𝑟 t
(ℓ,𝑡)
𝑗
+Wℓ

0
t(ℓ,𝑡)
𝑖

)
(5)

where t(ℓ,𝑡)
𝑖

denotes the temporal embeddings of entity 𝑖 learned by

ℓ-th layer of the extended R-GCN by aggregating events in 𝐺𝑡 ; 𝜈𝑖, 𝑗
is a factor to consider the inter-event time, which we define to be

𝜈𝑖, 𝑗 = log𝜏𝑖, 𝑗 ; R is the set of relations;N (𝑖,𝑟)𝑡 is entity 𝑖’s concurrent

neighbors at time 𝑡 , connected via an edge of type 𝑟 ;Wℓ
𝑟 andWℓ

0

are the weight matrices in the ℓ-th layer for relation 𝑟 and self-loop,

respectively. Then with 𝐿 layers in total, t𝐿
𝑖
summarizes entity 𝑖’s

temporal interactions in the 𝐿-hop neighborhood. The initial tem-

poral embeddings t(0,𝑡)
𝑖

are set to the static representation t𝑖 that
EvoKG learns to capture the temporal characteristics of entities,

i.e., t(0,𝑡)
𝑖

= t𝑖 for any time 𝑡 .

To model the dynamics of temporal updates, the context for

modeling inter-event time should reflect the changes made by new

events. Given t(𝐿,𝑡)
𝑖

which summarizes the temporal interaction pat-

terns from concurrent events at time 𝑡 , EvoKG learns time-evolving

dynamics from the evolution of t(𝐿,𝑡)
𝑖

over time, by using recurrent

neural networks RNNte for temporal entity representation learning:

t(∗,𝑡)
𝑖

= RNNte

(
t(𝐿,𝑡)
𝑖

, t(∗,𝑡−1)
𝑖

)
(6)

where t(𝐿,𝑡)
𝑖

is the input to RNNs at each time; t(∗,0)
𝑖

is zero-initialized;

and t(∗,𝑡)
𝑖

is the temporal embedding of entity 𝑖 updated after events

until time 𝑡 are processed. In this framework, as aggregating incom-

ing and outgoing neighbors captures sending and receiving patterns

between entities, EvoKG aggregates neighborhood in both direc-

tions to learn embeddings that reflect different interaction patterns,

which are then processed by RNNte to be used in the context 𝒄∗𝑒 .
Next, EvoKG considers the concurrent events 𝐺𝑟𝑡 that have re-

lation 𝑟 , and takes the average of the temporal embeddings of the

entities in𝐺𝑟𝑡 to provide it as the context t𝑡𝑟 to RNNtr, which learns

the temporal embedding t(∗,𝑡)𝑟 of relation 𝑟 at time 𝑡 :

t(∗,𝑡)𝑟 = RNNtr

(
t𝑡𝑟 , t
(∗,𝑡−1)
𝑟

)
. (7)

For brevity, we use the notation t∗
𝑖
= t(∗,𝑡)

𝑖
and t∗𝑟 = t(∗,𝑡)𝑟 .

3.2 Modeling Evolving Network Structure
As new events occur, TKGs evolve structurally and the dynamics

between entities also change over time. For instance, companies

that did not work together may start to collaborate at some point

to work on the same project, and this change may influence the

communication patterns between them and related entities in the

TKG. We capture this intricate structural dynamics by modeling

the conditional probability 𝑝 (𝑠, 𝑟, 𝑜 |𝐺<𝑡) of an event triple (𝑠, 𝑟, 𝑜).
Conditional Density Estimation of Event Triple. To model

𝑝 (𝑠, 𝑟, 𝑜 |𝐺<𝑡), we learn the embeddings of entities and relations

(which we discuss in the next paragraph), which capture their

time-evolving structural dynamics. For flexibility, we learn these

embeddings separately from temporal embeddings discussed in

Section 3.1. Let s𝑖 and s𝑟 denote the static structural embeddings of

entity 𝑖 and relation 𝑟 , and let s∗
𝑖
and s∗𝑟 be the structural embeddings

of entity 𝑖 and relation 𝑟 obtained by processing events until time 𝑡 .

We concatenate static and dynamic embeddings and denote them

using s∗
𝑖
= [s∗

𝑖
∥s𝑖] and s∗𝑟 = [s∗𝑟 ∥s𝑟]. Then EvoKG summarizes

the past events𝐺<𝑡 , which 𝑝 (𝑠, 𝑟, 𝑜 |𝐺<𝑡) is conditioned on, by the

graph-level representation g∗, which EvoKG obtains via an element-

wise max pooling over the structural embeddings of all entities, i.e.,

g∗=max({s∗𝑖 | 𝑖 ∈ entities(𝐺<𝑡)}) . (8)

Based on these representations, we decompose 𝑝 (𝑠, 𝑟, 𝑜 |𝐺<𝑡) to be

𝑝 (𝑠, 𝑟, 𝑜 |𝐺<𝑡) = 𝑝 (𝑜 |𝑠, 𝑟,𝐺<𝑡) · 𝑝 (𝑟 |𝑠,𝐺<𝑡) · 𝑝 (𝑠 |𝐺<𝑡) (9)

and parameterize each term separately, as follows:

𝑝 (𝑜 |𝑠, 𝑟,𝐺<𝑡) = softmax

(
MLP

(
[s∗𝑠 ∥s∗𝑟 ∥g∗]

))
, (10)

𝑝 (𝑟 |𝑠,𝐺<𝑡) = softmax

(
MLP

(
[s∗𝑠 ∥g∗]

))
, (11)

𝑝 (𝑠 |𝐺<𝑡) = softmax

(
MLP

(
[g∗]

))
. (12)

Time-Evolving StructuralRepresentations.An effectivemod-

eling of 𝑝 (𝑠, 𝑟, 𝑜 |𝐺<𝑡) based on the above parameterization de-

pends on learning informative context that reflects how structural

dynamics between entities have changed over time. As with learn-

ing temporal embeddings, neighborhood aggregation of GNNs and

recurrent event modeling using RNNs provide an effective frame-

work to capture this complex structural evolution. Thus, we adapt

the framework used for event time modeling in Section 3.1 for

learning time-evolving structural embeddings.

Let s(ℓ,𝑡)
𝑖

denote the structural embeddings of entity 𝑖 learned by

ℓ-th R-GCN layer by aggregating concurrent events 𝐺𝑡 . As before,

we set the initial structural embeddings s(0,𝑡)
𝑖

to s𝑖 for each time 𝑡 .

Given embeddings s(ℓ,𝑡)
𝑖

for all entities, s(ℓ+1,𝑡)
𝑖

is learned using

Equation (5), where t(ℓ,𝑡)
𝑖

is replaced by s(ℓ,𝑡)
𝑖

, and 𝜈𝑖, 𝑗 is set to the

neighborhood size |N (𝑖,𝑟)𝑡 |. The structural relation embedding s𝑡𝑟 at
time 𝑡 is constructed using concurrent events in the same way as in

the temporal case. Then EvoKG learns the time-evolving structural

embeddings s(∗,𝑡)
𝑖

and s(∗,𝑡)𝑟 using RNNse and RNNsr as follows.

s(∗,𝑡)
𝑖

= RNNse

(
s(𝐿,𝑡)
𝑖

, s(∗,𝑡−1)
𝑖

)
, s(∗,𝑡)𝑟 = RNNsr

(
s𝑡𝑟 , s

(∗,𝑡−1)
𝑟

)
(13)

For brevity, we use the notation s∗
𝑖
= s(∗,𝑡)

𝑖
and s∗𝑟 = s(∗,𝑡)𝑟 .

3.3 Parameter Learning
Loss Function. Let Liet and Ltriple

denote the negative log-

likelihood (NLL) of the inter-event time and an event triple, respec-

tively. Based on our problem formulation and modeling choices,

the two NLLs of a quadruple 𝑞= (𝑠, 𝑟, 𝑜, 𝑡) (i.e., a timestamped event

in a TKG) are obtained as follows.

Liet (𝑞) = − log𝑝 (𝑡 |𝑠, 𝑟, 𝑜,𝐺<𝑡) = − log 𝑝 (𝜏 |𝒘∗𝑒 , 𝝁∗𝑒 ,𝝈∗𝑒) (14)

L
triple
(𝑞) = − log𝑝 (𝑠, 𝑟, 𝑜 |𝐺<𝑡)

= − log𝑝 (𝑜 |𝑠, 𝑟,𝐺<𝑡) − log 𝑝 (𝑟 |𝑠,𝐺<𝑡) − log 𝑝 (𝑠 |𝐺<𝑡)
(15)

We optimize EvoKG byminimizing the lossL containing both NLLs

for all events in the training set:

L =
∑
𝑡

∑
𝑞=(𝑠,𝑟,𝑜,𝑡) ∈𝐺𝑡

𝜆1 Liet (𝑞) + 𝜆2 Ltriple
(𝑞) (16)

where 𝜆1 and 𝜆2 control the importance of each loss term.

Algorithm 1: Parameter Learning

Input: TKG 𝐺 with training data, TKG 𝐺 ′ with validation

data, maximum number of epochs𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠 ,

number 𝐿 of R-GCN layers, patience 𝑝 , number of

time steps 𝑏 for truncated backpropagation.

𝑒𝑝𝑜𝑐ℎ ← 1

repeat
foreach 𝑡 ∈ Timestamps(𝐺) do

if 𝑡 > 0 then
Compute the loss L𝑡 for concurrent events in𝐺𝑡
based on Equation (16)

Optimize model parameters and truncate

backpropagation every 𝑏 time steps

foreach 𝑖 ∈Entities (𝐺𝑡) do /* executed in parallel*/
Compute t(𝐿,𝑡)

𝑖
and t∗

𝑖
using eqs. (5) and (6)

Compute s(𝐿,𝑡)
𝑖

and s∗
𝑖
using a modified version

of eq. (5) and eq. (13)

foreach 𝑟 ∈ Rels (𝐺𝑡) do /* executed in parallel */
Compute t∗𝑟 and s∗𝑟 using eqs. (7) and (13)

Evaluate the validation performance for events in 𝐺 ′

𝑒𝑝𝑜𝑐ℎ ← 𝑒𝑝𝑜𝑐ℎ + 1
until epoch = max_epochs or no improvement in validation

performance for 𝑝 consecutive times

Table 3: Statistics of real-world TKGs. Time interval denotes the
minimum duration between two temporally adjacent events.

Dataset
Train
Edges

Valid
Edges

Test
Edges # Entities

Rel-
ations

Time
Interval

ICEWS18 373,018 45,995 49,545 23,033 256 24 hours

ICEWS14 275,367 48,528 341,409 12,498 260 24 hours

ICEWS-500 184,725 32,292 228,648 500 256 24 hours

GDELT 1,734,399 238,765 305,241 7,691 240 15 minutes

WIKI 539,286 67,538 63,110 12,554 24 1 year

YAGO 161,540 19,523 20,026 10,623 10 1 year

Learning Algorithm. Since there exist intricate relational and
temporal dependencies among events in TKGs, it is not optimal

to decompose events into independent sequences for an efficient

training, as we lose relational information. At the same time, since a

TKGmay cover a long period of time, keeping track of the entire his-

tory for each entity can incur prohibitively high computation and

memory cost, especially when learning graph-contextualized rep-

resentations for entities and relations. To address these challenges,

we organize events by their timestamps and process concurrent

events in parallel, while truncating backpropagation every 𝑏 time

steps (Algorithm 1). As experimental results show, this enables an

accurate and efficient parameter learning, which outperforms the

best baseline in terms of both prediction accuracy and efficiency.

4 EXPERIMENTS
In experiments, we answer the following research questions.

• [RQ1] How accurately can EvoKG estimate the event time?

• [RQ2] How accurately can EvoKG predict temporal links?

• [RQ3]How efficient is EvoKG in terms of training and inference?

• [RQ4] How do different parameter settings and event time mod-

eling affect EvoKG’s performance?

Evo
KG

Kn
ow-
Evo
lve
GH
NN
LiT
SEE MH

P
RT
PP
RE
-Ne
t

Evo
lveG

CN

tNo
deE
mb
ed
HyT

E

TA
-Di
stM
ult

0

20

40

M
A

E
(h

ou
rs

)

9.65 42.82 146.4 2592 1349 2727

B
et
te
r

−77%

× × × × ×

ICEWS-500

0

5

10

M
A

E
(h

ou
rs

)

2.89 478.3 7.18 303.8 N/A N/A × × × × ×

B
et
te
r

−60%
GDELT

Figure 3: EvoKG achieves the best event time prediction re-
sults, with up to 77% less MAE than the second best method;
all improvements are statistically significant with 𝑝-value <
0.05. Note that many methods for TKGs (marked by ×) can-
not predict event time. N/A denotes results are unavailable.

After describing the datasets (Section 4.1), we present results for

the above research questions (Sections 4.2 to 4.5). Experimental

settings are provided in Appendix A.

4.1 Temporal Knowledge Graph Data
We use five real-world TKGs that have been widely used in previous

studies: ICEWS18 [2], ICEWS14 [41], GDELT [22], WIKI [21], and

YAGO [23]. ICEWS (Integrated Crisis Early Warning System) and

GDELT (Global Database of Events, Language, and Tone) are event-

based TKGs; WIKI and YAGO are knowledge bases with temporally

associated facts. Statistics of these TKGs are presented in Table 3.We

order these datasets by timestamps, and split each one into training,

validation, and test sets, as shown in Table 3. We also use ICEWS-

500 [41] for experiments on event time prediction, which is a TKG

constructed from ICEWS data, containing a smaller number of

nodes than ICEWS18, since some previous studies reported results

only on ICEWS-500 without releasing code.

4.2 Event Time Prediction (RQ1)
Task Description. Given an event triple 𝑒 = (𝑠, 𝑟, 𝑜) and the

history 𝐺<𝑡 , the goal is to predict when the event 𝑒 will happen.

Specifically, the time of an event triple 𝑒 is estimated to be the

expected value of the time that event 𝑒 occurs, given the history.

Thanks to the use of a mixture distribution, in EvoKG, this expecta-

tion is obtained in a closed form by

E𝜏∼𝑝∗𝑒 (𝜏) (𝜏) =
∑

𝑘
(𝑤∗𝑒)𝑘 exp

(
(𝜇∗𝑒)𝑘 + ((𝑠∗𝑒)𝑘)2/2

)
. (17)

On the other hand, other approaches, such as GHNN [14], need to

approximate the integral to compute the expected value by using

Monte Carlo, as they do not have a close-form solution. We report

MAE (mean absolute error), which is the average of the absolute

difference between the predicted and true time in hours. Lower

MAE indicates higher prediction accuracy.

Baselines. We compare EvoKG against three existing methods

for modeling TKGs with the ability to predict event time: Know-

Evolve [41], GHNN [14], and LiTSEE [45]. Know-Evolve and GHNN

model event time based on temporal point process (TPP) frame-

work. While there exist several other methods for modeling TKGs,

they are unable to forecast event time, thus they cannot be used

for this evaluation. We also report the result of two other baselines

used in [41], MHP (Multi-dimensional Hawkes Process) and RTPP

(Recurrent Temporal Point Process). MHP models dyadic entity

interactions as multi-dimensional Hawkes process: an entity pair

constitutes an event, and MHP learns when each event occurs, with-

out taking relations (event types) into account. RTPP is a simplified

version of RMTPP [7], which estimates the conditional intensity

function of an event by using a global RNN. Relations are also

considered in RTPP.

Results. Figure 3 reports the event time prediction accuracy on

ICEWS-500 and GDELT . Results of Know-Evolve, RTPP, and MHP

are obtained from [41] (except that we obtained Know-Evolve’s

result on GDELT using the reference implementation), and those of

LiTSEE and GHNN are taken from [14]. Notably, most TKGmethods

in Figure 3 are marked with× due to their inability to estimate event

time. Also, the results of RTPP and MHP are not available (marked

with ‘n/a’) as their implementation is not publicly available. In

EvoKG, we used 𝜏min to model the inter-event time. In experiments,

methods are updated using the observed graph snapshot at each

time step to make future predictions.

Results show that EvoKG consistently outperforms all existing

approaches, with up to 77% less MAE than the second-best method.

We conduct one-sample t-tests and verify that all improvements

over baselines are statistically significantwith 𝑝-value < 0.05. Graph-

based methods (EvoKG, Know-Evolve, and GHNN), which learn

the temporal patterns of events by utilizing information from the

neighborhood, perform much better than simpler baselines (RTPP

and MHP), which model event time based only on direct interac-

tions between entities. Also, TPP-based Know-Evolve and GHNN

outperform LiTSEE, a non-TPP approach which incorporates time

information by adding a temporal component into entity embed-

dings. EvoKG achieves the best event time prediction results by

modeling event time using mixture distributions, which are much

more flexible and expressive than those used by existing methods.

4.3 Temporal Link Prediction (RQ2)
Task Description. Given a test quadruple 𝑞= (𝑠, 𝑟, 𝑜, 𝑡) and the

history 𝐺<𝑡 , we create a perturbed quadruple 𝑞′= (𝑠, 𝑟, 𝑜 ′, 𝑡) by re-

placing 𝑜 with every other entity 𝑜 ′ in the graph, and compute the

score of 𝑞′. We then sort all perturbed quadruples in descending or-

der of the score and report the rank of the ground truth quadruple 𝑞.

We report MRR (mean reciprocal rank), which is the average of the

reciprocal of the ground truth 𝑞’s rank, and Hits@{3,10}, which is

the percentage of correct entities in the top 3 and 10 predictions. For

both metrics, higher values indicate better link prediction results.

Baselines. We compare EvoKG against the following baselines

for both static and temporal KG reasoning. (1) DistMult [47], R-

GCN [34], ConvE [6], and RotatE [39] are methods for static KG rea-

soning. They are applied to a static, cumulative graph constructed

from events in the training data, where edge timestamps are ig-

nored. (2) TA-DistMult [8] and HyTE [4] are methods for temporal

KG reasoning in an interpolation setting. (3) dyngraph2vecAE [10],

tNodeEmbed [37], EvolveGCN [28], and GCRN [35] are methods

for reasoning over homogeneous graphs in an extrapolation setting.

(4) Know-Evolve [41], DyRep [42], and RE-Net [17] are methods for

temporal KG reasoning in an extrapolation setting. GHNN [14] is

101 102 103 104 105

Runtime (seconds)

GDELT

ICEWS18

WIKI

YAGO

Inference
 49×

 139×
 232×

 291× EvoKG
RE-Net

102 103 104
GDELT

ICEWS18

WIKI

YAGO

Training
 30×

 19×
 28×

 15× EvoKG
RE-Net

Figure 4: EvoKG performs training (top) and inference (bot-
tom) up to 30× and 291× faster than RE-Net.

not included as the implementation is not available. Also, results re-

ported in [14] were obtained after applying its own filtering criteria,

where GHNN achieved similar results to RE-Net.

Results. Table 4 provides link prediction results on five TKGs.

Results of baselines are obtained from [17]. In EvoKG, we used 𝜏eo
to model the inter-event time. In experiments, after making predic-

tions at each time step, methods are updated using the observed

graph snapshot. EvoKG outperforms all existing approaches across

different datasets, achieving up to 116% higher MRR than the best

baseline, except on GDELT, where EvoKG achieves similar perfor-

mance to the best baseline. It is noteworthy that an improvement

over baselines is the most significant on WIKI and YAGO, which

contains much more events occurring at relatively regular intervals.

By modeling event time, EvoKG can predict such temporal patterns

accurately. Among baselines, static methods in the first four rows

perform worse than the best temporal baseline, RE-Net, as they do

not consider temporal factors. At the same time, some temporal

methods, such as dyngraph2vecAE and EvolveGCN, often perform

worse than static methods, even though they are designed to take

temporal evolution of dynamic networks into account. This indi-

cates that incorporating temporal factors needs to be done carefully

to avoid introducing additional noise. Know-Evolve and DyRep

are the two existing methods based on temporal point processes.

While they can be used for temporal link prediction, they are not

effective for predicting links, even after applying an MLP decoder

to their embeddings, as they focus on modeling just 𝑝 (𝑡 |𝑠, 𝑟, 𝑜,𝐺<𝑡),
and thus do not explicitly learn the evolving network structure

by modeling 𝑝 (𝑠, 𝑟, 𝑜 |𝐺<𝑡) as in EvoKG. By modeling event time

and network structure simultaneously, EvoKG outperforms various

existing methods in predicting temporal links and event times.

4.4 Efficiency (RQ3)
Setup. We compare EvoKG against RE-Net, the best performing

baseline method for temporal link prediction, in terms of model

training and inference speed. We evaluate the training speed by

measuring the time taken to train one epoch, and the inference

speed by measuring the time taken to evaluate the entire test data

in terms of 𝑝 (𝑠, 𝑟, 𝑜 |𝐺<𝑡).
Results. Figure 4 shows the time taken for training (top) and

inference (bottom) over four TKGs. The training speed for EvoKG

is 23× on average, and up to 30×, faster than RE-Net. In making

Table 4: EvoKG outperforms existing methods in terms of temporal link prediction in most cases, achieving up to 116% higher
MRR (mean reciprocal rank) on real-world TKGs. Best results are in bold, and second best results are underlined.

Method
ICEWS14 ICEWS18 WIKI YAGO GDELT

MRR H@3 H@10 MRR H@3 H@10 MRR H@3 H@10 MRR H@3 H@10 MRR H@3 H@10

S
t
a
t
i
c

DistMult 9.72 10.09 22.53 13.86 15.22 31.26 27.96 32.45 39.51 44.05 49.70 59.94 8.61 8.27 17.04

R-GCN 15.03 16.12 31.47 15.05 16.49 29.00 13.96 15.75 22.05 27.43 31.24 44.75 12.17 12.37 20.63

ConvE 21.64 23.16 38.37 22.56 25.41 41.67 26.41 30.36 39.41 41.31 47.10 59.67 18.43 19.57 32.25

RotateE 9.79 9.37 22.24 11.63 12.31 28.03 26.08 31.63 38.51 42.08 46.77 59.39 3.62 2.26 8.37

T
e
m
p
o
r
a
l

TA-DistMult 11.29 11.60 23.71 15.62 17.09 32.21 26.44 31.36 38.97 44.98 50.64 61.11 10.34 10.44 21.63

HyTE 7.72 7.94 20.16 7.41 7.33 16.01 25.40 29.16 37.54 14.42 39.73 46.98 6.69 7.57 19.06

dyngraph2vecAE 6.95 8.17 12.18 1.36 1.54 1.61 2.67 2.75 3.00 0.81 0.74 0.76 4.53 1.87 1.87

tNodeEmbed 13.36 13.13 24.31 7.21 7.64 15.75 8.86 10.11 16.36 3.82 3.88 8.07 12.97 12.61 21.22

EvolveGCN 8.32 7.64 18.81 10.31 10.52 23.65 27.19 31.35 38.13 40.50 45.78 55.29 6.54 5.64 15.22

Know-Evolve 0.05 0.00 0.10 0.11 0.00 0.47 0.03 0.00 0.04 0.02 0.00 0.01 0.11 0.02 0.10

Know-Evolve+MLP 16.81 18.63 29.20 7.41 7.87 14.76 10.54 13.08 20.21 5.23 5.63 10.23 15.88 15.69 22.28

DyRep+MLP 17.54 19.87 30.34 7.82 7.73 16.33 10.41 12.06 20.93 4.98 5.54 10.19 16.25 16.45 23.86

R-GCRN+MLP 21.39 23.60 38.96 23.46 26.62 41.96 28.68 31.44 38.58 43.71 48.53 56.98 18.63 19.80 32.42

RE-Net 23.91 26.63 42.70 26.81 30.58 45.92 31.55 34.45 42.26 46.37 51.95 61.59 19.44 20.73 33.81

EvoKG 27.18
±0.001

30.84
±0.001

47.67
±0.001

29.28
±0.002

33.94
±0.004

50.09
±0.002

68.03
±0.031

79.60
±0.036

85.91
±0.063

68.59
±0.003

81.13
±0.005

92.73
±0.009

19.28

±0.001
20.55

±0.001
34.44
±0.002

inferences, EvoKG is 177× on average, and up to 291×, faster than
RE-Net. This is because RE-Net’s design for handling events results

in a lot of repeated computations for neighborhood aggregation and

processing event history. The difference in runtime is even more

pronounced in making inferences since RE-Net processes event

quadruples individually during inference. On the other hand, EvoKG

processes concurrent events simultaneously, effectively reducing

redundant operations. As a result, EvoKG performs both tasks much

more efficiently than RE-Net.

4.5 Ablation Study (RQ4)
4.5.1 Parameter Sensitivity. We evaluate how the performance of

EvoKG changes, as we vary (a) the embedding size, (b) the number

of R-GCN layers, (c) the number of mixture components, and (d)

truncation length (the number of time steps between backpropaga-

tion truncation in RNNs). Figure 5 shows the link prediction result

on ICEWS18 (top), and event time prediction result on ICEWS-500

(bottom); reported values denote the ratio of the result obtained

with the parameter setting on the x-axis to the best result.

Embedding Size. We set the embedding size (both temporal

and structural embeddings) to 100, 200, and 400. As Figures 5a

and 5b show, the best accuracy on the two datasets is achieved by

an embedding size of 100, while using a much larger embedding

size of 400 hurts the performance, as this leads to overfitting.

Number of R-GCN Layers. EvoKG extends R-GCNs for learn-

ing temporal and structural representations. The number of R-GCN

layers determines the size of the neighborhood from which a node

aggregates information. For predicting both temporal link and event

time, using two layers leads to a better result than using a single

layer, indicating that an increased neighborhood brings useful in-

formation for modeling a TKG. However, using more layers can

incur over-smoothing issues, decreasing time prediction accuracy.

Number of Mixture Components. EvoKG uses a mixture dis-

tribution to model the event time. The number of mixture compo-

nents affects the flexibility of the mixture distribution. Figures 5a

100 200 400
(1) Embedding Size

0.96

0.98

1.00

B
et

te
r

1 2 3
(2) # Layers in R-GCN

0.985

0.990

0.995

1.000

16 64 128 256
(3) # Mixture Components

0.990

0.995

1.000

5 10 20 40
(4) Truncation Length

0.96

0.98

1.00
H@3 / Highest H@3 MRR / Highest MRR

(a) Temporal link prediction performance of EvoKG on ICEWS18.

100 200 400
(1) Embedding Size

0.99

1.00

1.01

1.02

M
A

E
/ L

ow
es

t M
A

E

B
et
te
r

1 2 3
(2) # Layers in R-GCN

1.0

1.1

1.2

M
A

E
/ L

ow
es

t M
A

E

16 64 128 256
(3) # Mixture Components

1.00

1.02

1.04

1.06

M
A

E
/ L

ow
es

t M
A

E

5 10 20 40
(4) Truncation Length

1.0

1.1

1.2

M
A

E
/ L

ow
es

t M
A

E

(b) Event time prediction performance of EvoKG on ICEWS-500.

Figure 5: Link prediction and event time prediction performance
as we vary (1) embedding size, (2) number of R-GCN layers, (3)
number of mixture components, and (4) truncation length.

and 5b report the performance of EvoKG as the number of mixtures

is set to 16, 64, 128, and 256. EvoKG achieves the best link and

event time prediction results, with 16 and 64 mixture components,

respectively. While using a larger number of mixture components

decreases performance, EvoKG still achieves high accuracy, and is

not very sensitive to these parameter settings.

Truncation Length. For efficient and scalable training, EvoKG

truncates backpropagation every 𝑏 time steps (Algorithm 1). We

set 𝑏 to 5, 10, 20, and 40, and measure the performance. On the two

datasets, the best result is achieved with𝑏 = 40 (link prediction) and

𝑏 = 10 (event time prediction), and using a smaller time steps tends

to decrease the accuracy, as this restricts the model’s ability to keep

track of the history. Results also show that if the truncation length

is longer than appropriate, it may hurt the predictive accuracy.

ICEWS14 ICEWS18 WIKI YAGO GDELT
Datasets

0

20

40

60

Im
pr

ov
em

en
t (

%
) b

y
ev

en
t t

im
e

m
od

el
in

g

B
et
te
rH@3

H@10
MRR

Figure 6: Modeling event time improves temporal link pre-
diction accuracy on all TKGs, by up to 61%.
4.5.2 Effects of Event Time Modeling. To evaluate the importance

of modeling event time in the overall quality of TKG modeling, we

report in Figure 6 the improvement made by event time modeling in

terms of link prediction accuracy on all TKGs. Specifically, let Acc1,2

and Acc2 be the link prediction performance obtained with both

terms and only the second term in Equation (2), respectively. The

improvement in Figure 6 is defined to be ((Acc1,2 −Acc2)/Acc2) ×
100. Results show that modeling event time consistently improves

the prediction accuracy on all datasets, by up to 61%.

5 RELATEDWORK
In this section, we review previous works on reasoning over graphs.

Reasoning over Static Graphs. Inspired by the success of the

Skip-gram model [24] in NLP, several methods [12, 31, 40] learn

node embeddings that maximize the likelihood of preserving neigh-

borhoods of nodes in a network via random walks. More recently,

many graph neural networks (GNNs) have been developed for rep-

resentation learning in homogeneous graphs for semi-supervised

and self-supervised settings, including GCN [18] and GAT [43].

To learn the representations of entities and relations in hetero-

geneous KGs, tensor factorization (TF) [19] has been widely used.

There exist several types of TF methods [13, 15, 27, 29, 30], such as

CP and Tucker decomposition, which make different assumptions

on the underlying data generating process. Yet, most TFmethods are

not well suited for temporal data (e.g., they do not take inter arrival

times into account). In recent years, various relational learning tech-

niques have been proposed for heterogeneous KGs, using different

scoring functions to evaluate the triples in KGs, including models

with distance-based scoring functions (e.g., TransE [1], RotatE [39])

and models based on semantic matching (e.g., RESCAL [26], Dist-

Mult [47], NTN [38], ConvE [6]). GNNs have also been extended for

relation-aware representation learning on KGs, such as R-GCN [34]

and HAN [44]. Overall, these methods are developed for static

graphs and lack the ability to model temporally evolving dynamics.

Reasoning over Dynamic Homogeneous Graphs. To cap-

ture temporal dynamics in time-evolving graphs, RNNs have been

used to summarize and maintain evolving entity states in many

methods [20, 28, 32, 35, 37]. Often, GNNs have been combined

with RNNs to capture both structural and temporal dependen-

cies [28, 32, 35]. Another line of work [33, 46] employed graph

attention mechanisms to make the model aware of the temporal

order and the time span between entities when computing the atten-

tion weights. Some other approaches applied deep autoencoders to

dynamic graph snapshots [10, 11], enforced temporal smoothness

on entity embeddings [48, 49], and performed temporal random

walks [25]. As these methods are designed for single-relational dy-

namic graphs, they lack mechanisms to capture the multi-relational

nature of TKGs, which we focus on in this paper.

Reasoning overDynamicHeterogeneousGraphs. Static KG
embedding methods have been extended to take temporal infor-

mation into account, including TA-DistMult [8], TTransE [21],

HyTE [4], and diachronic embedding [9]. These temporal KG em-

bedding techniques address an interpolation problem where the

goal is to infer missing facts at some point in the past, and cannot

predict future events. Recently, several methods have been devel-

oped to tackle the extrapolation problem setting, where the goal is

to predict new facts at future time steps. TensorCast [5] uses expo-

nential smoothing to forecast latent entity representations, obtained

with TF. RE-Net [17] learns dynamic entity embeddings by sum-

marizing concurrent events in an autoregressive architecture; yet,

it has no components to model the event time. Know-Evolve [41],

DyRep [42], and GHNN [14] model the occurrences of events over

time by using temporal point processes (e.g., Rayleigh and Hawkes

processes) that estimate the conditional intensity function. Inspired

by [36], EvoKG models the event time by directly estimating its

conditional density in a flexible and efficient framework.

In summary, most existing methods for both homogeneous and

heterogeneous dynamic graphs model just the second term on the

evolving network structure in Equation (2), and thus cannot predict

when events will occur. On the other hand, a few methods like

[41, 42] that model the first term on the evolving temporal patterns

in Equation (2) do not model the other term, which greatly limits

their reasoning capacity. In this paper, we present a problem formu-

lation that unifies these two major tasks (Section 2), and develop

an effective framework EvoKG that tackles them simultaneously.

6 CONCLUSION
Temporal knowledge graphs (TKGs) represent facts about entities

and their relations, which occurred at a specific time, or are valid for

a specific duration of time. Reasoning over TKGs, i.e., inferring new

facts from TKGs, is crucial to many applications, including ques-

tion answering and recommender systems. Towards an effective

reasoning over TKGs, this paper makes the following contributions.

• Problem Formulation. We present a problem formulation that

unifies the two core problems for TKG reasoning—modeling the

timing of events and the evolving network structure.

• Framework. We develop EvoKG, an effective framework for

modeling TKGs that jointly addresses the two core problems.

• Effectiveness & Efficiency. Experiments show that EvoKG out-

performs existing methods in terms of effectiveness (link and

time prediction accuracy improved by up to 116%) and efficiency

(training speed improved by up to 30× over the best baseline).

Reproducibility. The code and data are available at https://

namyongpark.github.io/evokg.

Future Work. We plan to improve the explainability and trans-

parency of EvoKG, such that EvoKG can answer questions like

“When entity 𝑖 is estimated to interact with entity 𝑗 , which past

events had great influence on their current relationship?”. We also

plan to extend EvoKG for anomaly detection in dynamic networks.

ACKNOWLEDGMENTS
This work was funded by Carnegie Mellon University CyLab, with

generous support from Microsoft. Namyong Park was supported

by the Bloomberg Data Science Ph.D. Fellowship and the ILJU

Foundation Ph.D. Fellowship.

https://namyongpark.github.io/evokg
https://namyongpark.github.io/evokg

REFERENCES
[1] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational

Data. In NIPS. 2787–2795.
[2] Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman, James

Starz, and Michael Ward. 2015. ICEWS coded event data. Harvard Dataverse 12
(2015).

[3] Xiaojun Chen, Shengbin Jia, and Yang Xiang. 2020. A review: Knowledge reason-

ing over knowledge graph. Expert Syst. Appl. 141 (2020).
[4] Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha P. Talukdar. 2018. HyTE:

Hyperplane-based Temporally aware Knowledge Graph Embedding. In EMNLP.
Association for Computational Linguistics, 2001–2011.

[5] Miguel Ramos de Araujo, Pedro Manuel Pinto Ribeiro, and Christos Faloutsos.

2017. TensorCast: Forecasting with Context Using Coupled Tensors (Best Paper

Award). In ICDM. IEEE Computer Society, 71–80.

[6] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.

Convolutional 2D Knowledge Graph Embeddings. In AAAI. AAAI Press, 1811–
1818.

[7] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-

Rodriguez, and Le Song. 2016. Recurrent Marked Temporal Point Processes:

Embedding Event History to Vector. In KDD. ACM, 1555–1564.

[8] Alberto García-Durán, Sebastijan Dumancic, and Mathias Niepert. 2018. Learning

Sequence Encoders for Temporal Knowledge Graph Completion. In EMNLP.
Association for Computational Linguistics, 4816–4821.

[9] Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart. 2020.

Diachronic Embedding for Temporal Knowledge Graph Completion. In AAAI.
AAAI Press, 3988–3995.

[10] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2020. dyngraph2vec:

Capturing network dynamics using dynamic graph representation learning.

Knowl. Based Syst. 187 (2020).
[11] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. DynGEM: Deep

Embedding Method for Dynamic Graphs. CoRR abs/1805.11273 (2018).

[12] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for

Networks. In KDD. ACM, 855–864.

[13] Ekta Gujral, Ravdeep Pasricha, and Evangelos E. Papalexakis. 2020. Beyond Rank-

1: Discovering Rich Community Structure in Multi-Aspect Graphs. In WWW.

ACM / IW3C2, 452–462.

[14] Zhen Han, Yunpu Ma, Yuyi Wang, Stephan Günnemann, and Volker Tresp. 2020.

Graph Hawkes Neural Network for Forecasting on Temporal Knowledge Graphs.

In AKBC.
[15] Byungsoo Jeon, Inah Jeon, Lee Sael, and U Kang. 2016. SCouT: Scalable coupled

matrix-tensor factorization - algorithm and discoveries. In ICDE. IEEE Computer

Society, 811–822.

[16] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. 2020.

A Survey on Knowledge Graphs: Representation, Acquisition and Applications.

CoRR abs/2002.00388 (2020).

[17] Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. 2020. Recurrent Event

Network: Autoregressive Structure Inferenceover Temporal Knowledge Graphs.

In EMNLP (1). Association for Computational Linguistics, 6669–6683.

[18] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR (Poster). OpenReview.net.
[19] Tamara G. Kolda and Brett W. Bader. 2009. Tensor Decompositions and Applica-

tions. SIAM Rev. 51, 3 (2009), 455–500.
[20] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic Em-

bedding Trajectory in Temporal Interaction Networks. In KDD. ACM, 1269–1278.

[21] Julien Leblay and Melisachew Wudage Chekol. 2018. Deriving Validity Time in

Knowledge Graph. In WWW (Companion Volume). ACM, 1771–1776.

[22] Kalev Leetaru and Philip A Schrodt. 2013. Gdelt: Global data on events, location,

and tone, 1979–2012. In ISA annual convention, Vol. 2. Citeseer, 1–49.
[23] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. 2015. YAGO3: A

Knowledge Base from Multilingual Wikipedias. In CIDR. www.cidrdb.org.

[24] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.

2013. Distributed Representations of Words and Phrases and their Composition-

ality. In NIPS. 3111–3119.
[25] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee

Koh, and Sungchul Kim. 2018. Continuous-Time Dynamic Network Embeddings.

In WWW (Companion Volume). ACM, 969–976.

[26] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A Three-Way

Model for Collective Learning on Multi-Relational Data. In ICML. Omnipress,

809–816.

[27] Sejoon Oh, Namyong Park, Jun-Gi Jang, Lee Sael, and U Kang. 2019. High-

Performance Tucker Factorization on Heterogeneous Platforms. IEEE Trans.
Parallel Distributed Syst. 30, 10 (2019), 2237–2248.

[28] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,

Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.

EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In

AAAI. AAAI Press, 5363–5370.
[29] Namyong Park, Byungsoo Jeon, Jungwoo Lee, and U Kang. 2016. BIGtensor:

Mining Billion-Scale Tensor Made Easy. In CIKM. ACM, 2457–2460.

[30] Namyong Park, Sejoon Oh, and U Kang. 2019. Fast and scalable method for

distributed Boolean tensor factorization. VLDB J. 28, 4 (2019), 549–574.
[31] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning

of social representations. In KDD. ACM, 701–710.

[32] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico

Monti, and Michael M. Bronstein. 2020. Temporal Graph Networks for Deep

Learning on Dynamic Graphs. CoRR abs/2006.10637 (2020).

[33] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.

DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-

Attention Networks. In WSDM. ACM, 519–527.

[34] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg,

Ivan Titov, and Max Welling. 2018. Modeling Relational Data with Graph Con-

volutional Networks. In ESWC (Lecture Notes in Computer Science), Vol. 10843.
Springer, 593–607.

[35] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson.

2018. Structured Sequence Modeling with Graph Convolutional Recurrent Net-

works. In ICONIP (1) (Lecture Notes in Computer Science), Vol. 11301. Springer,
362–373.

[36] Oleksandr Shchur, Marin Bilos, and Stephan Günnemann. 2020. Intensity-Free

Learning of Temporal Point Processes. In ICLR. OpenReview.net.
[37] Uriel Singer, Ido Guy, and Kira Radinsky. 2019. Node Embedding over Temporal

Graphs. In IJCAI. ijcai.org, 4605–4612.
[38] Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. 2013.

Reasoning With Neural Tensor Networks for Knowledge Base Completion. In

NIPS. 926–934.
[39] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. RotatE: Knowl-

edge Graph Embedding by Relational Rotation in Complex Space. In ICLR (Poster).
OpenReview.net.

[40] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. LINE: Large-scale Information Network Embedding. In WWW. ACM,

1067–1077.

[41] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. 2017. Know-Evolve:

Deep Temporal Reasoning for Dynamic Knowledge Graphs. In ICML (Proceedings
of Machine Learning Research), Vol. 70. PMLR, 3462–3471.

[42] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.

2019. DyRep: Learning Representations over Dynamic Graphs. In ICLR (Poster).
OpenReview.net.

[43] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR (Poster).
OpenReview.net.

[44] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S.

Yu. 2019. Heterogeneous Graph Attention Network. InWWW. ACM, 2022–2032.

[45] Chengjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Jens Lehmann, and

Hamed Shariat Yazdi. 2019. Temporal Knowledge Graph Embedding Model

based on Additive Time Series Decomposition. CoRR abs/1911.07893 (2019).

[46] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan.

2020. Inductive representation learning on temporal graphs. In ICLR. OpenRe-
view.net.

[47] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Em-

bedding Entities and Relations for Learning and Inference in Knowledge Bases.

In ICLR (Poster).
[48] Le-kui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic

Network Embedding by Modeling Triadic Closure Process. In AAAI. AAAI Press,
571–578.

[49] Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, and Aram Galstyan. 2016.

Scalable Temporal Latent Space Inference for Link Prediction in Dynamic Social

Networks. IEEE Trans. Knowl. Data Eng. 28, 10 (2016), 2765–2777.

A APPENDIX
A.1 Experimental Settings

Data Split.We split datasets into training, validation, and test

sets in chronological order, as shown in Table 3. For training EvoKG,

we applied early stopping, checking the validation performance

with a patience of five. Then the model with the best validation

performance was used for testing.

Hyperparameters.We used a two-layer R-GCN [34] with block

diagonal decomposition (BDD), which reduces the number of pa-

rameters and alleviates overfitting, and set the size of entity and

relation embeddings in EvoKG to 200 (except for WIKI, where it

was set to 192 to meet the constraint of using R-GCN with BDD).

Static entity embeddings were initialized using the Glorot initial-

ization, while the initial dynamic embeddings were zero-initialized.

We used a single-layer Elman RNN with tanh non-linearity, but

different RNNs, such as GRU, can easily be used. We trained the

model using the AdamW optimizer with a learning rate of 0.001,

a weight decay of 0.00001, 𝛽1 = 0.9, and 𝛽2 = 0.999, and applied

dropout with 𝑝 = 0.2. As training the module for modeling network

structure usually takes longer than training the module for model-

ing event time, we first trained the model with 𝜆1=0 and 𝜆2=1, and

then trained the entire model with 𝜆1 =𝜆2 = 1 until convergence.

We truncated the backpropagation for RNNs every 40 time steps

for GDELT, and every 20 time steps for other datasets. We set the

number 𝐾 of mixture components to 128.

For the details of baselines used in this work, please refer to [41]

for Know-Evolve, RTPP, and MHP; [14] for GHNN and LiTSEE; and

[17] for other baselines including RE-Net.

Compute Resources.We ran experiments on a Linux machine

with 8 CPUs (Intel(R) Xeon(R) CPU E5-2623 v4 @ 2.60GHz), 30GB

RAM, and an NVIDIA Quadro P6000 GPU.

Software. To implement EvoKG and the evaluation pipeline, we

used the following software (software version is specified in the

parentheses): python (3.8.3), Deep Graph Library (0.53), PyTorch

(1.7.1), NumPy (1.18.5), and pandas (1.0.5). We used PyTorch’s RNN

implementation, and Deep Graph Library’s R-GCN implementation.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Modeling a Temporal Knowledge Graph
	3.1 Modeling Event Time
	3.2 Modeling Evolving Network Structure
	3.3 Parameter Learning

	4 Experiments
	4.1 Temporal Knowledge Graph Data
	4.2 Event Time Prediction (RQ1)
	4.3 Temporal Link Prediction (RQ2)
	4.4 Efficiency (RQ3)
	4.5 Ablation Study (RQ4)

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Experimental Settings

