# Neural Tensor Factorization for Temporal Interaction Learning

Xian Wu, Baoxu Shi, Yuxiao Dong, Chao Huang, Nitesh Chawla

Department of Computer Science and Engineering
University of Notre Dame





### **Background&Problem Formulation**



### **Objective:**

learn a predictive model that can infer the unknown values with the observed ones



### Limitations



**Limitation 1:** Independence assumption in temporal dimension

Limitation 2: Linear interaction across dimensions

### The Proposed Framework-Neural Tensor Factorization



To capture the complex temporal dynamics, we utilize LSTM to encode the evolving interactions.

To model the non-linearity of multidimensional interactions, we use MLP on top of the first component

## **Experimental Settings**

#### **Netflix Rating Data**

#### **Beselines**:

- 1.Latent Factor based Models: Probabilistic Matrix Factorization (PMF), Bayesian Probabilistic Matrix Factorization (BPMF), Bayesian Probabilistic Tensor Factorization (BPTF)
- 2.Neural network based Models: Temporal Deep Semantic Structured Model (TDSSM), Recurrent Recommendation Networks (RRN), Neural Collaborative Filtering (NCF)

**Metrics**: Root Mean Square Error(RMSE) and Mean Absolute Error (MAE)

# Experiments

| Month - 2004 | Jan    |        | Mar    |        | May    |        |
|--------------|--------|--------|--------|--------|--------|--------|
| Metrics      | RMSE   | MAE    | RMSE   | MAE    | RMSE   | MAE    |
| PMF          | 0.9385 | 0.7331 | 0.9274 | 0.7263 | 0.9243 | 0.7171 |
| BPMF         | 0.9879 | 0.7686 | 0.9829 | 0.7659 | 0.9741 | 0.7541 |
| TDSSM        | 1.0031 | 0.8001 | 1.0386 | 0.8488 | 0.9897 | 0.7886 |
| RRN          | 1.0062 | 0.7936 | 0.9901 | 0.7798 | 0.9721 | 0.7584 |
| NCF          | 0.9498 | 0.7517 | 0.9364 | 0.7357 | 0.9421 | 0.7408 |
| NTFdot       | 0.9869 | 0.7763 | 0.9736 | 0.7702 | 0.9600 | 0.7523 |
| NTF(ReLU)    | 0.9192 | 0.7204 | 0.9111 | 0.7169 | 0.9127 | 0.7131 |
| NTF(sigmoid) | 0.9158 | 0.7178 | 0.9113 | 0.7148 | 0.9141 | 0.7110 |
| NTF(tanh)    | 0.9178 | 0.7187 | 0.9128 | 0.7185 | 0.9135 | 0.7111 |

#### **Observation:**

the sparser the data, the larger performance gain we can achieve

density degree: Jan-3.67%, Mar-3.86%, May-4.11%

### Conclusion

We developed a Neural network based Tensor Factorization(NTF) to model temporal interactions.

Extensive experiments show that NTF significantly outperforms baseline methods.



# **Thanks**