
39

Will Triadic Closure Strengthen Ties in Social Networks?*

HONG HUANG, Huazhong University of Science and Technology, China

YUXIAO DONG, Microsoft Research Redmond, USA

JIE TANG, Tsinghua University, China

HONGXIA YANG, Alibaba Group, China

NITESH V. CHAWLA, University of Notre Dame, USA

XIAOMING FU, University of Goettingen, Germany

The social triad—a group of three people—is one of the simplest and most fundamental social
groups. Extensive network and social theories have been developed to understand its structure,
such as triadic closure and social balance. Over the course of a triadic closure—the transition from
two ties to three among three users, the strength dynamics of its social ties, however, are much
less well understood. Using two dynamic networks from social media and mobile communication,
we examine how the formation of the third tie in a triad affects the strength of the existing two
ties. Surprisingly, we find that in about 80% social triads, the strength of the first two ties are
weakened although averagely the tie strength in the two networks maintains an increasing or stable
trend. We discover that 1) the decrease in tie strength among three males is more sharply than
that among females, and 2) the tie strength between celebrities are more likely to be weakened
as the closure of a triad than those between ordinary people. Further, we formalize a triadic tie
strength dynamics prediction problem to infer whether social ties of a triad will become weakened
after its closure. We propose a TRIST method—a kernel density estimation (KDE) based graphical
model—to solve the problem by incorporating user demographics, temporal effects, and structural
information. Extensive experiments demonstrate that TRIST offers a greater than 82% potential
predictability for inferring triadic tie strength dynamics in both networks. The leveraging of the
kernel density estimation and structural correlations enables TRIST to outperform baselines by up
to 30% in terms of F1-score.
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1 INTRODUCTION

Social relationships are formed as individuals connect and interact with each other. Collec-
tively, connected individuals further emerge as groups, communities, and societies, which
manifest as networks. In this work, we focus on studying the simplest and most fundamental
organizing unit among individuals in social networks — the social triad. As networks evolve,
the strength of social ties does not keep constant over time. Some ties may become strong
ties at first and then weaken over time, while other social ties begin as weak ties and become
stronger. The dynamics of tie strength become even more complicated when we consider the
interpersonal interactions, i.e., in a closed triad, will the formation of the third tie affect the
strength of the existing two ties?
A significant amount of work has been devoted to investigating triadic relationships in

social networks for decades. Simmel pioneered the study of “triad” and suggested that a
social triad is fundamentally different from a dyad as interaction between members decreases,
intimacy declines, strength and stability increase [Simmel 1950]. A common behavior was
often observed in a triad that two of the members will tend to unite against the other
one, which is known as two-against-one phenomenon [Caplow 1968]. Heider developed the
balance theory [Heider 1958] in social triads that explains the proverbs — “A friend of my
friend is my friend” and “The enemy of my enemy is my friend.” Davis et al. proposed a
status theory [Davis and Leinhardt 1972] that provides an organizing principle for directed
networks of signed links. They addressed how the interplay between signed (i.e., positive
and negative) relationships affects the structure of networks. However, in many online social
networks until today (e.g., Twitter, Facebook, Weibo, etc.), it is hard to tell the sign of
relationships in these networks where such theories, like balance theory and status theory
would not be applied any more.

Besides social theories on triadic relationships, a large body of work [Fang and Tang 2015;
Huang et al. 2014; Kossinets and Watts 2006; Lou et al. 2013; Romero and Kleinberg 2010;
Zignani et al. 2014] has focused on modeling and predicting the process of triadic closure,
i.e., the transition from open triads to closed triads. Furthermore, the process of triadic
closure has been empirically demonstrated to be relevant for characterizing both social ties
at the micro level [Dong et al. 2016; Sintos and Tsaparas 2014], and scaling laws at the
macro level, in social and information networks [Klimek and Thurner 2013; Leskovec et al.
2008; Zhang et al. 2017].

Although amount of interesting and promising discoveries have been found in the field of
social triads, little has been studied concerning what happens after triadic closure, especially
the dynamics of tie strength within a triad. Essentially, previous attempts were limited by
focusing on the closure transition, and ignoring the dynamics of triadic relationships after
its closure. In other words, the interaction dynamics in a triad is still unclear, particularly,
will triadic closure strengthen social ties? Further complications arise due to the complexity
of scrutinizing various factors that drive the interaction dynamics of social triads, such as
the demographics of a triad’s three users, their tie strength, and the formation order of the
links in a triad. Moreover, there is a lack of a basic understanding of the predictability of
triadic tie strength dynamics in social networks.
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Fig. 1. Illustrative example of triadic tie strength dynamics in social networks. The formation of link
𝑒𝐴𝐶 makes an open triad 𝒪𝐴𝐵𝐶 become a closed triad 𝒯𝐴𝐵𝐶 at time 𝑡, and develop different levels of
tie strength (numbers on each tie) within 𝒯𝐴𝐵𝐶 at time 𝑡+Δ𝑡;

In light of these limitations, we aim to understand how people are embedded and interact
within a closed social triad over time. Figure 1 shows an illustrative example of the evolution
of triadic relationships in social networks. We observe that an open triad 𝒪𝐴𝐵𝐶 becomes a
closed one 𝒯𝐴𝐵𝐶 with the formation of a new link 𝑒𝐴𝐶 at timestamp 𝑡. The goal is to trace
the dynamics of triadic interactions within these three users for a short period ∆𝑡 before and
after 𝑡. Specifically, we aim to understand the extent to which triadic tie strength dynamics
after the formation of the third link can be predicted from social networks.

Our studies could be beneficial to personal recommendation applications in OSN services.
For example, if the tie strength dynamics between two users is known, one could recommend
appropriate services for one user according to the usage of the other user. Similarity, when
we invite a new user to OSN services, we could make more efficient friend recommendations
as the estimation for tie strength dynamics would help us determine whether it is beneficial.

Contributions. Employing two types of large dynamic social networks — social media
and mobile communication — as the basis of our study, we trace the dynamics of social
interactions within social triads and systematically investigate the dynamics of tie strength in
social triads over time. The strength of a social tie is measured by its interaction frequency.

Our study unveils the following interesting discoveries. We surprisingly find that although
averagely the tie strength in the two dynamic social networks maintains an upward or stable
trend (shown in Figure 2), in around 80% of closed social triads, the strength of the first two
ties becomes weakened (shown in Figure 3) . We also discover that the stronger (as measured
by interaction frequency and reciprocity) the third tie is, the less likely the first two ties are
weakened; while the stronger the first two ties are, the more likely they are weakened. In
addition, we find that the decrease in tie strength among three males is more sharply than
that among females. Finally, we observe that in social media, tie strength between celebrities
are more likely to be weakened as the closure of a triad than those between ordinary people.

We then formalize the question of whether tie strength of a triad after closure will become
weakened as a triadic tie strength dynamics prediction problem. The prediction task is
to infer whether the formation of the third link in a given triad will, within a predefined
timeframe, make the interactions of the other two links infrequent. To solve this problem,
we propose a triadic tie strength dynamics (TRIST) model — a kernel density estimation
(KDE)-based factor graph. As a graphical model, TRIST incorporates not only attribute
features but also structural features into a unified framework. Another advantage of the
model comes from kernel density estimation, which smoothly models discrete attribute
features. The TRIST-ST model is a reduced version of the TRIST model, which utilizes
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Fig. 2. Trends of the interaction frequency over time. 𝑦-axis: Interaction Frequency (#interactions per
day). (a) Weibo network; (b) Mobile network.
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Fig. 3. Tie strength dynamics after triadic closure in social networks. In Weibo, ties in about 85% triads
have been weakened while in Mobile ties in 74% triads have been weakened.

only attribute features by kernel density estimation, and ignores structural features. Our
experimental results on both types of networks demonstrate that by using the same set of
attribute features with logistic regression, SVM, decision trees, and näıve Bayes, the TRIST-
ST model improves the prediction performance by up to 10% over the benchmarks due to
the leverage of kernel density estimation. By leveraging structural features additionally, the
proposed TRIST offers a greater-than-82% potential predictability for triadic tie strength
dynamics, and outperforms alternative methods by up to 30%, in terms of F1-score.

Data. We use two types of networks — social media and mobile networks. The social
media network comes from Weibo1, which is the most popular microblogging service in
China, with more than 560 million users. The Weibo dataset we use contains more than 1
million users and more than 308 million following relationships (links) [Huang et al. 2014].

1http://weibo.com
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Table 1. Data statistics

Item Weibo Mobile

#Users 1,776,950 194,526
#Links 308,489,739 206,934
#Interactions 15,827,764 3,908,132
#Open Triads 241,364,986 35,314,058
#Closed Triads 21,622,013 2,259,480
#Closed Triads with reciprocal links 954,440 532,308

These users generated more than 12 million retweeting records from September 28𝑡ℎ, 2012
to October 29𝑡ℎ, 2012. For each user, we have the demographic information — gender and
verified status — in their online profiles. The mobile network dataset is extracted from a
subset of a collection of two-month mobile call detail records from an anonymous country.
In this data, each user is anonymized by the data provider. We construct a sub-network
by viewing each user as a node, and connecting a link between two users if they have at
least one call from the two-month observation window. This resultant mobile sub-network
(Mobile) contains 194,526 users and 206,934 links. Table 1 details the statistics of the two
networks.

Organization. Section 2 formalizes the triadic tie strength dynamics prediction problem.
Section 3 demonstrates the dynamics status of triadic relationships in social networks and
investigates various factors that drive triadic tie strength dynamics. The proposed TRIST
model is introduced in Section 4 and its prediction performance is presented in Section 5.
Related work is summarized in Section 6, with our conclusion and recommendations for
future work provided in Section 7.

2 PROBLEM DEFINITION

Let 𝐺𝑡 = (𝑉 𝑡, 𝐸𝑡, 𝐼𝑡) denote a directed and weighted network at time 𝑡, where 𝑉 𝑡 = {𝑣𝑖}
is the set of users, 𝐸𝑡 ⊂ 𝑉 𝑡 × 𝑉 𝑡 is the set of links between users, with each link denoted
as 𝑒𝑖𝑗 = (𝑣𝑖, 𝑣𝑗) ∈ 𝐸𝑡. Then we can define a dynamic network 𝐺 = {𝐺𝑡 = (𝑉 𝑡, 𝐸𝑡), 𝑡 ∈
{1, · · · , 𝑡, · · · , 𝑇}} over a timeframe 𝑇 . To make it more readable, we summarize all notations
used in this paper in Table 2.

Definition 2.1. Closed and Open Triads. Given three users 𝐴, 𝐵, 𝐶 ∈ 𝑉 𝑡, if there
exists a link between any two users – 𝑒𝐴𝐵 , 𝑒𝐵𝐶 , 𝑒𝐴𝐶 ∈ 𝐸𝑡, we say that 𝐴, 𝐵, and 𝐶 form a
closed triad 𝒯𝐴𝐵𝐶 at timestamp 𝑡; if there are only two links – e.g., 𝑒𝐴𝐵 , 𝑒𝐵𝐶 ∈ 𝐸𝑡 – then
𝐴, 𝐵, and 𝐶 form an open triad 𝒪𝐴𝐵𝐶 in which users 𝐴 and 𝐶 are disconnected.

While extensive efforts have been devoted to explaining triadic relationships in social
networks, such as social balance [Heider 1958] and social status theories [Davis and Leinhardt
1972], little has been done to understand triadic interaction dynamics. In this work, we aim
to model the interaction dynamics of links 𝑒𝐴𝐵 and 𝑒𝐵𝐶 – when and after the third link 𝑒𝐴𝐶

is formed by which an open triad 𝒪𝐴𝐵𝐶 becomes a closed triad 𝒯𝐴𝐵𝐶 .
Suppose at timestamp 𝑡, the formation of edge 𝑒𝐴𝐶 turns an open triad 𝒪𝐴𝐵𝐶 into a

closed triad 𝒯𝐴𝐵𝐶 . Our goal is to trace the evolution of interactions in this triad when and
after the transition happens. More specifically, we investigate the changes of the interaction
frequencies of links 𝑒𝐴𝐵 and 𝑒𝐵𝐶 within a timeframe [𝑡−∆𝑡, 𝑡+∆𝑡], where ∆𝑡 is an observation
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window. The interaction frequency 𝐼𝐹𝑒 is simply defined as the average interaction times,

i.e., 𝐼𝐹
[𝑡−Δ𝑡,𝑡+Δ𝑡]
𝑒 /2∆𝑡.

Definition 2.2. Weakened or Strengthened Tie. Given a closed triad 𝒯𝐴𝐵𝐶 with the
third link 𝑒𝐴𝐶 formed at timestamp 𝑡, and the interaction histories of 𝑒𝐴𝐵 and 𝑒𝐵𝐶 , in a
future timestamp 𝑡′ (𝑡′ = 𝑡+∆𝑡, ∆𝑡 ≥ 0), we call tie 𝐼𝐹𝑒 is weakened within the timeframe

[𝑡−∆𝑡, 𝑡+∆𝑡] if the interaction frequency 𝐼𝐹
[𝑡,𝑡+Δ𝑡]
𝑒 deceases significantly (with 𝑝 < 0.01,

𝑡-test) compared with 𝐼𝐹
[𝑡−Δ𝑡,𝑡]
𝑒 ; otherwise, 𝐼𝐹𝑒 is strengthened.

In defining so, 𝐼𝐹𝑒 could be three different cases, including 𝐼𝐹𝐴𝐵, 𝐼𝐹𝐴𝐶 , or 𝐼𝐹𝐴𝐵+𝐴𝐶 .
We formally define the problem of predicting triadic tie strength dynamics as follows.

Problem 1. Triadic Tie Strength Dynamics Prediction. Given the set of closed
triads 𝒯 𝑡 who become closed at timestamp 𝑡 and a future timestamp 𝑡′ (𝑡′ = 𝑡+∆𝑡, ∆𝑡 ≥ 0),
the task is to learn a predictive function:

𝑓 : ({𝐺, 𝒯 𝑡,X}) → 𝑌 𝑡′

𝒯

where 𝑌 𝑡′

𝒯 denotes the dynamics status (strengthened vs. weakened) of 𝐼𝐹𝑒 within the
timeframe [𝑡−∆𝑡, 𝑡+∆𝑡], with 𝑦𝑖 = 0 indicating tie 𝐼𝐹𝑒 strengthened and 𝑦𝑖 = 1 indicating
that 𝐼𝐹𝑒 is weakened, and X is an attribute matrix associated with closed triads.

The problem is formalized in triads with directed links; there are in total 27 different types
of directed triads. In this work we consider the representative directed triangles with limiting
𝑒𝐴𝐵 and 𝑒𝐵𝐶 as reciprocal links, and leave the remaining cases for future work. The reason
comes from the fact that reciprocal relationships are considered friendships or social relation-
ships in social media [Kwak et al. 2010; Lou et al. 2013] or mobile communications [Dong
et al. 2014; Onnela et al. 2007].

3 TRIADIC TIE STRENGTH DYNAMICS

In this section, we first discern the degree to which triadic relationships in social networks
are weakened. We then move on to examine how different factors influence the dynamics
status of social triadic relationships in different networks. Specifically, given a closed triad
𝒯𝐴𝐵𝐶 that becomes closed by the formation of 𝑒𝐴𝐶 , we investigate the following observations
and factors:

∙ Tie Dynamics in Triads: What is the interaction dynamics of ties in social triads?
∙ Social Tie: How do the strength and reciprocity of the new tie 𝑒𝐴𝐶 and existing ties
𝑒𝐴𝐵 and 𝑒𝐵𝐶 affect the dynamics status of 𝐼𝐹𝑒?

∙ User Demographics: How do users’ demographic profiles — gender and social status —
influence triadic tie strength dynamics?

∙ Temporal Effects: How long does the formation of link 𝑒𝐴𝐶 influence triadic tie strength
dynamics?

3.1 Tie Dynamics in Triads

We examine the ratios of strengthened and weakened ties in social networks and the degree
to which a network as a whole presents weakened. We compare the results with interaction
dynamics in both open triads and a network as a whole. We consider all available data in
our dataset except those with incomplete information. For example, for Weibo data, we
consider 934,733 triads strength dynamics among all the 954,440 closed triads except those
19,707 triads (∼ 2.06%) that lack of gender and verified status information..
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Table 2. Notations

Notation Meaning

𝐺𝑡 A network at time t
𝑉 𝑡 A set of users
𝐸𝑡 A set of links
𝑒𝑖𝑗 A link connecting node 𝑖 and 𝑗

𝒯𝐴𝐵𝐶 A closed triad with three nodes being 𝐴, 𝐵 and 𝐶
𝒪𝐴𝐵𝐶 An open triad with three nodes being 𝐴, 𝐵 and 𝐶
𝐼𝐹𝑒 Interaction frequency of link 𝑒
∆𝑡 An Observation window
X An attribute matrix associated with closed triads

𝑌 𝑡′

𝒯 Dynamics status of triad 𝒯𝐴𝐵𝐶 in time 𝑡′

𝑓(xt
i , 𝑦

𝑡
𝑖) The probability of a tie’s dynamics state 𝑦𝑡𝑖 at time 𝑡 given xt

i associated with 𝒯𝑖
𝑔(𝑦𝑡𝑖 , 𝑦

𝑡′

𝑖 ) The probability of a tie’s dynamics state 𝑦𝑡
′

𝑖 at time 𝑡′ given its state 𝑦𝑡𝑖 at time 𝑡
ℎ(𝑦𝑡𝑖 , 𝑦

𝑡
𝑗) The probability of a tie’s dynamics state 𝑦𝑡𝑖 at time 𝑡 given 𝑦𝑡𝑗 of a triad 𝒯𝑗

𝑓(·) An attribute factor function
𝑔(·) A temporal factor function
ℎ(·) A social factor function
Φ(·) An attribute feature function
𝐾 The number of features
𝜅(·) A kernel function
Ψ(·) A temporal feature function

𝛼, 𝛽, 𝛾 The weight for feature functions
𝑍 Normalization factor
ℛ Objective function
𝜂 Learning rate

Suppose we have dynamic networks 𝐺 = {𝐺𝑡 = (𝑉 𝑡, 𝐸𝑡), 𝑡 ∈ {1, · · · , 𝑡, · · · , 𝑇}} with 𝑇
observed days in real datasets, where 𝑇 = 90 in the Weibo network and 𝑇 = 60 in the Mobile
network. We enumerate all combinations < 𝑡,∆𝑡 > of 𝑡 and ∆𝑡 with 𝑡 ≥ ∆𝑡 and 𝑡+∆𝑡 ≤ 𝑇 .
Given < 𝑡,∆𝑡 >, we study the closed triads that become closed at 𝑡 (Definition 2.1) and report
the average percentage of strengthened and weakened ties conditioned on ∆𝑡 (Definition 2.2).
Figure 4 plots the interaction dynamics of social triads in Weibo and Mobile.
In Figure 4, we can clearly see that in around 80% of closed triads the ties maintain a

weakened state, triggered by the formation of the third link. While the number of the two kinds
of strengthened ties is small, the increasingly strengthened ties (red lines) are consistently
more numerous than the non-changing strengthened ones (green lines). Specifically, we
observe that the interaction dynamics of link 𝑒𝐴𝐵 in Figure 4 (b,e) is a little weaker than
that of 𝑒𝐵𝐶 in Figure 4 (c,f). Overall, the triadic relationships reveal that tie strength tends
to become weakened in both the social media and mobile social networks.

We now compare the observations with the interaction dynamics in open triads to examine
whether the dynamics status of a closed triad 𝒯𝐴𝐵𝐶 arises from the formation of link 𝑒𝐴𝐶 .
Similar to the experiments in Figure 4, we study the interaction dynamics of open triads for
each < 𝑡,∆𝑡 >. Figure 5 plots the interaction dynamics of open triads in the Weibo and
Mobile.
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Fig. 4. Triadic tie strength dynamics of closed triads. 𝑥-axis: Δ𝑡 in Definition 2.2; 𝑦-axis: Probability
that a 𝐼𝐹𝑒 is strengthened (red and green lines) or weakened (blue line), conditioned on interaction
dynamics of 𝐼𝐹𝐴𝐵+𝐵𝐶 (a, d), 𝐼𝐹𝐴𝐵 (b, e), and 𝐼𝐹𝐵𝐶 (c, f).

We can see the differences of corresponding interaction dynamics between closed triads
(Figure 4) and open triads (Figure 5). In Weibo, the probabilities that links are weakened in
open triads vs. closed triads are 60% vs. 80% in Figures 4 (a) and 5 (a), 15% vs. 70% in
Figures 4 (b) and 5 (b), 50% vs. 80% in Figures 4 (c) and 5 (c). We can also see that in
Mobile, the weakened probabilities in Figures 4 (d, e, f) are higher than those in Figure 5
(d, e, f). Conversely, the remaining strengthened cases in open triads are more than those in
closed triads. In this sense, we conclude that the formation of the third link 𝑒𝐴𝐶 activates
weakened ties in triads.

3.2 Social Ties

We study how link 𝑒𝐴𝐶 ’s attributes — such as tie strength and reciprocity — influence the
dynamics status of ties in a closed triad 𝒯𝐴𝐵𝐶 . Although 𝑒𝐴𝐶 belongs to the triad 𝒯𝐴𝐵𝐶 , we
refer to it as an external tie because our goal is to study 𝑒𝐴𝐶 ’s influence on 𝑒𝐴𝐵 and 𝑒𝐵𝐶

with its establishment.

Tie Strength of 𝑒𝐴𝐶 . Tie strength represents the extent of closeness of social relationships.
We measure the strength of social ties by the number of interactions between two users in
Weibo (#retweets and #comments) and Mobile (#phone-calls) [Dong et al. 2014; Gilbert
2012; Onnela et al. 2007]. Such a definition suggests a way of answering the following question:
How does the strength of the newly formed link 𝑒𝐴𝐶 affect the dynamics status of 𝐼𝐹𝑒 in
𝒯𝐴𝐵𝐶? Figure 6 plots the influence of link 𝑒𝐴𝐶 with different tie strength (indicated by
different colors) in Weibo and Mobile. First, we observe that both networks present similar
patterns of triadic tie strength dynamics. Second, surprisingly, we find that as 𝑒𝐴𝐶 ’s tie
strength increases, the likelihood that tie strengthens in closed triads 𝒯𝐴𝐵𝐶 increases (blue
to red to green lines). In other words, frequent interactions of the newly formed link between
𝐴 and 𝐶 promote the stronger ties in the closed triad 𝒯𝐴𝐵𝐶 .
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Fig. 5. Triadic tie strength dynamics of open triads. 𝑥-axis: Δ𝑡; 𝑦-axis: Probability that the interaction
frequency of 𝐼𝐹𝑒 in an open triad is weakened (blue line), strengthened — increasing (red line), or
strengthened — decreasing (green line), conditioned on the interaction dynamics of 𝐼𝐹𝐴𝐵+𝐵𝐶 (a, d),
𝐼𝐹𝐴𝐵 (b, e), and 𝐼𝐹𝐵𝐶 (c, f).

Reciprocity of 𝑒𝐴𝐶 . A reciprocal (two-way) relationship, usually developed from a
parasocial (one-way) relationship, represents a stronger or trustful relationship between
users in social media [Kwak et al. 2010; Lou et al. 2013] and mobile communications [Dong
et al. 2014; Onnela et al. 2007]. We examine the extent to which the formation of link 𝑒𝐴𝐶

as a parasocial (one-way) and a reciprocal (two-way) relationship can affect the dynamics
status of the closed triad 𝒯𝐴𝐵𝐶 . Figure 7 reports the results of triadic tie strength dynamics
conditioned on the reciprocity of 𝑒𝐴𝐶 . From this figure, we see that while there are only slight
differences between parasocial and reciprocal relationships, the parasocial 𝑒𝐴𝐶 consistently
shows more positive effects on activating weakened ties in 𝒯𝐴𝐵𝐶 .

Tie Strength of 𝑒𝐴𝐵 and 𝑒𝐵𝐶 . We investigate how the tie strength of 𝑒𝐴𝐵 and 𝑒𝐵𝐶

before the formation of link 𝑒𝐴𝐶 influence the tie dynamics in 𝒯𝐴𝐵𝐶 after the establishment
of 𝑒𝐴𝐶 . Relative to the external tie (𝑒𝐴𝐶), we refer to 𝑒𝐴𝐵 and 𝑒𝐵𝐶 as internal ties in
𝒯𝐴𝐵𝐶 . Our intuition is that with strong internal social ties, three users tend to maintain
strengthened triadic relationships. Figure 8 details the results. Generally, we can see that
in both Weibo and Mobile, internal tie strength and triadic tie strength dynamics have a
negative correlation; that is, ties in a social triad have a high probability to transit to a
weakened state if it has strong internal ties before its closeness. The observation that is
against our intuition indicates that three people with strong connections in open triadic
relationships have the tendency to disperse their social focus and investment to the newly
connected social tie that actually makes this open triad closed.

3.3 User Demographics

We investigate the interplay of triadic tie strength dynamics and user demographic profiles in
social networks. Due to the unavailability of mobile users’ demographic information, in this
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Fig. 6. External tie strength (𝑒𝐴𝐶). 𝑥-axis: Δ𝑡 in Definition 2.2; 𝑦-axis: Probability that tie 𝐼𝐹𝑒 in 𝒯𝐴𝐵𝐶

is weakened, conditioned on interaction dynamics of 𝐼𝐹𝐴𝐵+𝐵𝐶 (a, d), 𝐼𝐹𝐴𝐵 (b, e), and 𝐼𝐹𝐵𝐶 (c, f).
𝐼𝐹 denotes the average number of interactions (#retweets and #comments in Weibo and #phone-calls
in Mobile) per day.
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Fig. 7. Reciprocity of external tie 𝑒𝐴𝐶 . 𝑥-axis: Δ𝑡 in Definition 2.2; 𝑦-axis: Probability that a tie 𝐼𝐹𝑒 in
𝒯𝐴𝐵𝐶 is weakened, conditioned on interaction dynamics of 𝐼𝐹𝐴𝐵+𝐵𝐶 (a, d), 𝐼𝐹𝐴𝐵 (b, e), and 𝐼𝐹𝐵𝐶

(c, f).

study we focus on Weibo. Specifically, we examine how users’ gender and status correlate
with the dynamics status of triadic relationships.
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Fig. 8. Internal tie strength (𝑒𝐴𝐵 and 𝑒𝐵𝐶). 𝑥-axis: Δ𝑡 in Definition 2.2; 𝑦-axis: Probability that a tie
𝐼𝐹𝑒 in 𝒯𝐴𝐵𝐶 is weakened, conditioned on interaction dynamics of 𝐼𝐹𝐴𝐵+𝐵𝐶 (a, d), 𝐼𝐹𝐴𝐵 (b, e), and
𝐼𝐹𝐵𝐶 (c, f). 𝐼𝐹 denotes the average number of interactions (#retweets and #comments in Weibo and
#phone-calls in Mobile) per day.

Gender. Previous studies have revealed that females and males display different social
behaviors and activities [Dong et al. 2014; Leskovec and Horvitz 2008]. Herein, we explore
how people of different genders maintain their triadic social connections. Given a triad 𝒯𝐴𝐵𝐶 ,
we use a three-bit binary code XXX (𝑋=𝐹 or 𝑀 denotes a female or male user) to represent
the gender information of its three users 𝐴, 𝐵, and 𝐶, respectively. We can enumerate
eight different combinations of three users’ gender. In Figure 9, we report the results of
four special cases in our problem, i.e., FFF, FMF, MFM, and MMM. We can observe that
different gender-based triads reveal different dynamics status. Generally, the decrease in tie
strength among three males is more sharply than that among females. In opposite-gender
triads, two females and one male (FMF in which the male serves as the bridge user 𝐵) have
the tendency to maintain relatively strengthened relationships, compared with triads with
two males and one female (MFM ). Overall, we conclude that triadic relationships with more
females (FFF and FMF ) tend to be stronger compared with the relationships with more
males (MMM and MFM ).

Status. We now look at the effects of users’ social status on triadic tie strength dynamics.
Weibo.com provides a service for “celebrities” 2 to verify their real-world status, such as
CEO, sports star, professor, and so on. We also use a three-bit binary code XXX (𝑋 = 1 or
0 denotes a verified celebrity or not) to represent the status information of three users 𝐴, 𝐵,
and 𝐶 in a triad. Figure 10 shows the dynamics status of triadic relationships conditioned
on three users’ social status. First, we can see that tie strength between celebrities are
more likely to be weakened as the closure of a triad than those between ordinary people.
Similar to the gender-based observations above, we examine the triadic tie strength dynamics
conditioned on the status of the bridge user 𝐵 (101 vs. 010 ). The results show that the

2We have also used degree and pagerank to category ”celebrities” and got similar results.
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Fig. 9. User gender correlation in Weibo. F: female user; M: male user. 𝑥-axis: Δ𝑡 in Definition 2.2;
𝑦-axis: Probability that a tie 𝐼𝐹𝑒 in 𝒯𝐴𝐵𝐶 is weakened, conditioned on interaction dynamics of 𝐼𝐹𝐴𝐵+𝐵𝐶

(a, d), 𝐼𝐹𝐴𝐵 (b, e), and 𝐼𝐹𝐵𝐶 (c, f).
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Fig. 10. User status correlation in Weibo. 1: verified celebrity; 0: ordinary user; 𝑥-axis: Δ𝑡 in Definition 2.2; 𝑦-axis:
Probability that a tie 𝐼𝐹𝑒 in 𝒯𝐴𝐵𝐶 is weakened, conditioned on interaction dynamics of 𝐼𝐹𝐴𝐵+𝐵𝐶 (a, d), 𝐼𝐹𝐴𝐵 (b, e), and
𝐼𝐹𝐵𝐶 (c, f).

triadic relationships maintained by one celebrity and two ordinary people (010 ) are stronger
than those in the reverse case (101 ). Overall, we conclude that the triadic relationships
among celebrities (111 and 101 ) tend to be weaker compared with the relationships among
ordinary people (000 and 010 ).

3.4 Temporal Effects

We finally study how the length of the observation timeframe — ∆𝑡 — influences the
dynamics status of triadic relationships. Recall that in Definition 2.2, we use the interaction
frequency within the timeframe ∆𝑡 to determine the triadic tie strength dynamics.
From Figures 4, 3, 5 – 10, they are all plotted conditioned on the length of ∆𝑡 (𝑥-axis).

Generally, we can see that when examining triadic tie strength dynamics conditioned on the
interaction dynamics of 𝑒𝐴𝐵+𝐵𝐶 — subfigures (a, d) in Figures 4, 3, 5 – 10, the dynamics
status of triadic relationships remains relatively horizontal as the increase of ∆𝑡. Specifically,
we notice that in Figures 4 – 10 the overall increasing trends of triadic tie strength dynamics
conditioned on 𝑒𝐴𝐵+𝐵𝐶 — subfigures (a, d) — come from the balance between the decreasing
trends of triadic tie strength dynamics conditioned on 𝑒𝐴𝐵 — subfigures (b, e) — and the
increasing trends conditioned on 𝑒𝐵𝐶 — subfigures (c, f) — as the length of ∆𝑡 increases,
respectively.

3.5 Summary

We conduct a regression analysis for the effects of different factors — user demographics and
social ties — on triadic tie strength dynamics in Table 3. In this analysis, the ordinary least
square model is used to model the relationships between the dependent variable (triadic
tie strength dynamics) and the independent variables (Column 1). It can be seen that the
reciprocity of link 𝑒𝐴𝐶 plays more important role in making ties a triad 𝒯𝐴𝐵𝐶 stay weakened
than its strength (2𝑛𝑑 line vs. 3𝑟𝑑 line). We also observe that in most cases, the demographics
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Table 3. Regression Analysis for triadic tie strength dynamics

Dynamics status on Dynamics status on Dynamics status on
𝐼𝐹𝐴𝐵 𝐼𝐹𝐵𝐶 𝐼𝐹𝐴𝐵+𝐵𝐶

Reciprocity 0.796 8.23𝑒-03** 0.321
of 𝑒𝐴𝐶 (0.015) (0.013) (0.013)
𝐼𝐹𝐴𝐶 6.32𝑒-09*** 5.02𝑒-09*** 1.87𝑒-11***

(0.011) (0.010) (0.009)
𝐼𝐹𝐴𝐵+𝐵𝐶 2.04𝑒-04*** 4.83𝑒-05*** 1.67𝑒-07***

(0.004) (0.003) (0.003)
Gender of A 5.49𝑒-03** 0.593 0.538

(0.019) (0.017) (0.016)
Gender of B 0.197 0.833 0.610

(0.020) (0.018) (0.017)
Gender of C 0.718 2.55𝑒-03** 3.14𝑒-03**

(0.019) (0.017) (0.016)
Status of A 0.048* 0.875 0.087#

(0.019) (0.017) (0.017)
Status of B 0.561 0.232 0.233

(0.020) (0.018) (0.017)
Status of C 0.695 3.55𝑒-03** 0.010*

(0.019) (0.017) (0.016)
𝑅2 0.019 0.023 0.029

Note: Robust standard errors in parentheses.
𝑅2: the proportion of variance in the criterion that is explained by the estimated regression model.
Two-sided 𝑝-value are reported and its significant level at: 0.1 (#), 0.05 (*), 0.01 (**), 0.001(***).

(gender and status) of three users are highly correlated with the tie dynamics. The regression
results are consistent with the observations above.
According to the correlation and regression analysis above, we provide the following

intuitions related to triadic tie strength dynamics in social networks:

∙ The triadic relationships are strongly weakened in both online social media and mobile
social networks.

∙ The stronger the third tie is, the less likely the first two ties are weakened; while the
stronger the first two ties are, the more likely they are weakened.

∙ The decrease in tie strength among three males is more sharply than that among
females.

∙ Tie strength between celebrities are more likely to be weakened as the closure of a
triad than those between ordinary people.

4 TRIST MODEL FRAMEWORK

Our goal is to examine the extent to which the triadic tie dynamics status can be predicted in
social networks. To do so, we propose a unified model to capture not only triads’ attributes but
also social and temporal correlations. In this section, the TRIST framework – a KDE-based
Factor Graph (KFG) – is proposed for predicting triadic tie strength dynamics.
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4.1 KDE-based Factor Graph (KFG)

Given a dynamic network 𝐺 = {𝐺𝑡 = (𝑉 𝑡, 𝐸𝑡), 𝑡 ∈ {1, · · · , 𝑡′}} and the attribute features X
of candidate triads, we define an objective function by maximizing the conditional probability
of triadic tie dynamics state 𝑌 , i.e., 𝑃 (𝑌 |X, 𝐺). In a factor graph [Kschischang et al. 2001],
the global probability can be factored as a product of local factor functions that capture
both the attribute features X and structural and temporal correlations in the dynamic
network 𝐺. Herein, we design three types of factor functions to model the observations in
Section 3.

∙ Attribute factor 𝑓(xt
i , 𝑦

𝑡
𝑖): The probability of a tie’s dynamics state 𝑦𝑡𝑖 at time 𝑡 given

the attribute vector xt
i associated with each triad 𝒯𝑖.

∙ Temporal factor 𝑔(𝑦𝑡𝑖 , 𝑦
𝑡′

𝑖 ), 𝑡 < 𝑡′: The probability of a tie’s dynamics state 𝑦𝑡
′

𝑖 at time
𝑡′ given its state 𝑦𝑡𝑖 at time 𝑡.

∙ Social factor ℎ(𝑦𝑡𝑖 , 𝑦
𝑡
𝑗): The probability of a tie’s dynamics state 𝑦𝑡𝑖 at time 𝑡 given the

dynamics status state 𝑦𝑡𝑗 of a triad 𝒯𝑗 .
Thus, we can define the joint distribution over the triadic tie strength dynamics 𝑌 given 𝐺
as

𝑃 (𝑌 |X, 𝐺) ∝
∏︁

𝑃 (X|𝑌 ) · 𝑃 (𝑌 |𝐺) (1)

where 𝑃 (𝑌 |𝐺) denotes the probability of labels, given the structure of the network and
its temporal dynamics, and 𝑃 (X|𝑌 ) denotes the probability of generating the attributes X
associated with each triad 𝑌 𝑡

𝒯 , given their label Y .
Assuming that the generative probability of attributes, given the label of each triad, is

conditionally independent, then

𝑃 (X|𝑌 ) ∝
∏︁
𝑖

𝑓(x𝑡
𝑖|𝑦𝑡𝑖) (2)

where 𝑓(x𝑡
𝑖|𝑦𝑡𝑖) is the probability of generating attributes x𝑖 given the label 𝑦𝑖.

Similarly, assuming that the probability of labels, given the structure of the network and
its temporal dynamics, is also conditionally independent, then

𝑃 (𝑌 |𝐺) ∝
𝑡′∏︁

𝑡=1

𝐺∏︁
𝑗

𝑔(𝑦𝑡𝑖 , 𝑦
𝑡′

𝑖 )ℎ(𝑦
𝑡
𝑖 , 𝑦

𝑡
𝑗) (3)

Thus, combining Eq.(2) and Eq. (3), we have

𝑃 (𝑌 |X, 𝐺) ∝
∏︁

𝑃 (X|𝑌 ) · 𝑃 (𝑌 |𝐺)

=

𝑡′∏︁
𝑡=1

𝐺∏︁
𝑖,𝑗

𝑓(xt
i , 𝑦

𝑡
𝑖)𝑔(𝑦

𝑡
𝑖 , 𝑦

𝑡′

𝑖 )ℎ(𝑦
𝑡
𝑖 , 𝑦

𝑡
𝑗)

(4)

We illustrate the graphical representation of our proposed model in Figure 11. The bottom
left part is the input network. From the input social network, we generate three closed
candidate triads, including 𝒯𝑣1,𝑣2,𝑣3 , 𝒯𝑣1,𝑣3,𝑣4 and 𝒯𝑣1,𝑣4,𝑣5 . In the prediction model, these
three candidate triads are modeled as yellow ellipses. The attribute features defined over the
candidate triads at each timestamp are captured by the 𝑓(·) factor functions. The temporal
correlations between triads at different timestamps are modeled by the 𝑔(·) factor functions.
The social correlations between different triads are captured by the ℎ(·) factor functions.
Based on all the considerations, we construct the factor graph at the top level of Figure 11.
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Fig. 11. Graphical representation of the TRIST model. Open triads become closed at time 𝑡. Three

candidate triads in network layer 𝐿1 are mapped into three hidden variable nodes 𝑦𝑡
𝑖 , 𝑖 = 1, 2, 3 in factor

graph layer 𝐿2. We observe two timestamps 𝑡 and 𝑡+Δ𝑡 (Δ𝑡 > 0). The broader the line is, the stronger

the tie is. ℎ(·) represents the social correlation function between two triads, and 𝑔(·) represents the

temporal correlation function between the two statuses of one triad at two timestamps. In order to get

attribute factor function, we applied kernel density estimation 𝑓(·). An example of the histogram and

kernel density estimation of the tie strength of 𝑒𝐴𝐵 and 𝑒𝐵𝐶 using a Gaussian kernel is shown in (b).

𝑦-axis: density; 𝑥-axis: interaction frequencies of ties 𝑒𝐴𝐵 and 𝑒𝐵𝐶 . In (a), we present different kernel

functions.

KDE-based attribute factor. Straightforwardly, we initialize the defined factors in a
Markov random field based on the Hammersley-Clifford theorem [Hammersley and Clifford
1971]. In particular, we initialize the attribute factor as

𝑓(xt
i , 𝑦

𝑡
𝑖) =

1

𝑍1
exp{

𝐾∑︁
𝑘=1

𝛼𝑘Φ(𝑥
𝑡
𝑖𝑘, 𝑦

𝑡
𝑖)} (5)

where 𝛼𝑘 is the weight of the 𝑘𝑡ℎ attribute, 𝐾 is the number of features, and Φ(·) is the
attribute feature function.
There are various ways to instantiate the attribute feature function Φ(·), i.e., binary

function [Huang et al. 2014; Lou et al. 2013]. However, a binary feature function cannot
accurately capture correlations and similarities among features and would lose important
information. In order to better capture these similarities, we propose using kernel density
estimation to instantiate attribute factor functions.
Kernel density estimation (KDE) [Wasserman 2004], without any priori information on

the probability distribution of the dataset, using a non-parametric way to estimate random
variables’ density functions, is an attractive technique to obtain estimations [Gerber 2014; Li
et al. 2013a; Zhang and Chow 2013]. To obtain a kernel density estimation, we first place a
kernel — a smooth, strongly peaked function — at the position of each data point, and then
add up the contributions from all the estimations to obtain a smooth curve. For instance,
Figure 11 shows an example of the histogram (gray part) and kernel density estimation
with a Gaussian kernel (blue curve) for the interaction-strength feature. Specifically, for a
Gaussian kernel, we have the following definition:

Φ(𝑥𝑡
𝑖𝑘, 𝑦

𝑡
𝑖) =

𝑁𝑘∑︁
𝑛=1

1

𝜆
𝜅(

𝑥𝑖𝑘 − 𝑥𝑛

𝜆
)
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Table 4. Kernel functions

Kernel Function

Gaussian kernel 𝜅(𝑥) = 1/
√︀

(2𝜋) exp(−1/2 𝑥2)
Tophat kernel 𝜅(𝑥) = 1/2 if |𝑥| ≤ 1

Epanechnikov kernel 𝜅(𝑥) = 3/4(1− 𝑥2) if |𝑥| ≤ 1
Exponential kernel 𝜅(𝑥) = exp(−𝑥)

Linear kernel 𝜅(𝑥) = 1− 𝑥 if |𝑥| ≤ 1
Cosine kernel 𝜅(𝑥) = 𝜋/4 cos(𝜋/2 𝑥) if |𝑥| ≤ 1

By using kernel density estimation, the attribute feature function can be initialized as

𝑓(xt
i , 𝑦

𝑡
𝑖) =

1

𝑍1
exp{

𝐾∑︁
𝑘=1

𝑁𝑘∑︁
𝑛=1

𝛼𝑘
1

𝜆
𝜅(

𝑥𝑖𝑘 − 𝑥𝑛

𝜆
)} (6)

where 𝜅(·) is the kernel function with a peak at 𝑥𝑛 , 𝜆 is the kernel bandwidth, and 𝑁 is the
number of data points of each feature. We thus get the real values of the attribute features.
Theoretically, we can use any smooth, strongly peaked function as a kernel, if the area

under the curve of this kernel equals 1 — which is to make sure that the resulting KDE is
normalized. In this work, we consider six commonly used kernel functions [Wasserman 2004]
as shown in Table 4. The curves of these functions are shown in Figure 11. The Tophat
kernel, the Epanechnikov kernel, the linear kernel, and the cosine kernel are zero outside a
finite range, whereas the Gaussian kernel and exponential kernel are nonzero everywhere,
but negligibly small outside a limited domain. By default, we use a Gaussian kernel in our
TRIST framework and discuss the effects of different kernel choices in experiments.

It is worth mentioning that a KDE-based attribute factor can be used to study graph
kernels [Vishwanathan et al. 2010] as well. Intuitively, graph kernels can be considered as
functions measuring the similarity of pairs of graphs, making the whole family of kernel
methods applicable to graphs [Bach 2008; Shervashidze et al. 2009; Vishwanathan et al.
2010]. In our work, we aim to measure similarity between different candidate closed triads,
which also provides a way to measure graph similarity.

Temporal factor. For the temporal factor, we model the interrelations between different
weakened states of one triad at different timestamps. Specifically, we define it as:

𝑔(𝑦𝑡𝑖 , 𝑦
𝑡′

𝑖 ) =
1

𝑍2
𝑒𝜎1(𝑡

′−𝑡) exp {𝛽𝑖Ψ(𝑦𝑡
′

𝑖 , 𝑦
𝑡
𝑖)} (7)

where 𝑒𝜎1(𝑡
′−𝑡) is a triad-independent time-increase factor, 𝜎1 is a pre-defined parameter,

Ψ(·) is a temporal feature function defined as Ψ(·) = (𝑦𝑡
′

𝑖 − 𝑦𝑡𝑖)
2 and 𝛽 is the weight of Ψ(·).

In the model, we only consider the dependency of triadic tie strength dynamics between two
subsequent timestamps as the same assumption in a hidden Markov model [Ghahramani
and Jordan 1997], Markov Random field [Hammersley and Clifford 1971] and Kalman

Filters [Haykin et al. 2001]. The triad-independent time-increase factor 𝑒𝜎1(𝑡
′−𝑡) is defined

as an exponential function, so that its parameter 𝜎1 can be simply absorbed by combining
it with 𝛽𝑖. Thus, the above temporal factor function can be rewritten as

𝑔(𝑦𝑡𝑖 , 𝑦
𝑡′

𝑖 ) =
1

𝑍2
exp {𝛽𝑖(𝑡

′ − 𝑡)(𝑦𝑡
′

𝑖 − 𝑦𝑡𝑖)
2} (8)
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Social factor. Intuitively, a triad’s dynamics status state may be influenced by other
triads; e.g., its neighborhood. For example, closed triad 𝒯𝐴𝐵𝐶 and closed triad 𝒯𝐴𝐵𝐷 share
a common link 𝑒𝐴𝐵, then the dynamics status state of 𝒯𝐴𝐵𝐶 is highly correlated with
that of 𝒯𝐴𝐵𝐷. In addition, individuals have a tendency to associate and bond with similar
others according to homophily theory [McPherson et al. 2001]. Individuals in homophilic
relationships share common characteristics, which makes similar triads have the similar
dynamics status patterns [McPherson et al. 2001].
Similarly, in order to capture the correlations between two triads, we define the social

factor function as:

ℎ(𝑦𝑡𝑖 , 𝑦
𝑡
𝑗) =

1

𝑍3
exp {𝛾𝑖𝑗(𝑦𝑡𝑖 − 𝑦𝑡𝑗)

2} (9)

where 𝛾𝑖𝑗 is the weight of the feature function, representing the influence degree of 𝑦𝑖 on 𝑦𝑗 .
Finally, by integrating Eqs. (2), (5), and (6) into Eq. (1), we can obtain joint probability

as follows:

𝑃 (𝑌 |X, 𝐺) ∝ 1

𝑍
exp{

𝑡′∑︁
𝑡=1

𝐺∑︁
𝑖

𝐾∑︁
𝑘=1

𝛼𝑘Φ𝑘(𝑥
𝑡
𝑖𝑘, 𝑦

𝑡
𝑖)

+

𝑡′∑︁
𝑡=1

𝐺∑︁
𝑖

𝛽𝑖(𝑡
′ − 𝑡)(𝑦𝑡

′

𝑖 − 𝑦𝑡𝑖)
2 +

𝑡′∑︁
𝑡=1

𝐺∑︁
𝑖,𝑗

𝛾𝑖𝑗(𝑦
𝑡
𝑖 − 𝑦𝑡𝑗)

2}

(10)

where 𝑍 = 𝑍1𝑍2𝑍3 is a normalization factor to guarantee that the result is a valid probability.

4.2 Learning and Prediction

Model Learning. Given the joint probability in Eq. (10), we have the following log-
likelihood objective function

ℛ(𝜃) = log𝑃𝜃(𝑌 |X, 𝐺) (11)

The task of model learning is to estimate a parameter configuration 𝜃 = ({𝛼𝑘}, {𝛽𝑖}, {𝛾𝑖𝑗})
that maximizes the log-likelihood objective function — i.e.,

𝜃 = argmaxℛ(𝜃)

To solve the maximization problem, we employ a gradient descent method. The idea is that
each parameter 𝜃 is assigned an initial value, and then the gradient of each parameter with
regard to the objective function is calculated. For example, the gradient of the parameter
𝛼𝑘 with regard to Eq. (11) is written as:

ℛ(𝜃)

𝛼𝑘
= E[Φ𝑘(𝑥

𝑡
𝑖𝑘, 𝑦

𝑡
𝑖)]− E𝑃𝛼𝑘

(𝑌 |X)[Φ𝑘(𝑥
𝑡
𝑖𝑘, 𝑦

𝑡
𝑖)] (12)

where E[Φ𝑗(𝑥
𝑡
𝑖𝑘, 𝑦

𝑡
𝑖)] is the expectation of factor function Φ𝑘(𝑥

𝑡
𝑖𝑘, 𝑦

𝑡
𝑖) given the data distri-

bution; and E𝑃𝛼𝑘
(𝑌 |X)[Φ𝑘(𝑥

𝑡
𝑖𝑘, 𝑦

𝑡
𝑖)] is the expectation of factor function Φ𝑘(𝑥

𝑡
𝑖𝑘, 𝑦

𝑡
𝑖) under

the distribution 𝑃𝛼𝑘
(𝑌 |X) estimated by the model. Before calculating variables’ marginal

distribution, we need first get factor functions for different factors; i.e., we run KDE to get
estimates for attribute factors, and get temporal factors from two subsequent timestamps in
the whole period we observed.

Similarly, the gradients of parameters 𝛽𝑖 and 𝛾𝑖𝑗 can be derived. Finally each parameter
is updated with a learning rate 𝜂:
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Algorithm 1: Learning algorithm for the TRIST model.

Input: network 𝐺𝑡, learning rate 𝜂, predicting time 𝑇
Output: estimated parameters 𝜃

Initialize 𝜃 ← 0;

repeat
repeat

Get temporal factors between timestamp 𝑡 and its last timestamp 𝑡− 1;
Update 𝑡;

until 𝑡 > 𝑇 ;
Run KDE to get estimates of attribute factors:

𝑓(xt
i , 𝑦

𝑡
𝑖) =

1

𝑍1
exp{

𝐾∑︁
𝑘=1

𝑁𝑘∑︁
𝑛=1

𝛼𝑘
1

𝜆
𝜅(

𝑥𝑖𝑘 − 𝑥𝑛

𝜆
)}

Perform LBP to calculate marginal distribution of unknown variables 𝑃 (𝑌, 𝑌 𝐿|𝐺);

Perform LBP to calculate the marginal distribution of known variables 𝑃 (𝑌 |𝐺);
Calculate the gradient of 𝛼𝑗 according to Eq. (12) (for 𝛽𝑖 and 𝛾𝑖𝑗 with a similar formula);
Update parameter 𝜃 with the learning rate 𝜂 with Eq. (13);

until Convergence;

𝜃𝑚+1 = 𝜃𝑚 + 𝜂 · ℛ(𝜃)

𝜃
(13)

where 𝑚 is the iteration time. The learning algorithm is summarized in Algorithm 1.

Feature Definition. We now describe how we define the factor functions in our model.
According to the analysis in the previous section, we define factor functions of three categories:
an attribute factor, a temporal factor and a social factor.
Attribute factor. Attribute factors include social tie and user demographics. For social

tie, we define a feature for 𝑒𝐴𝐶 ’s reciprocity indicating whether 𝑒𝐴𝐶 is reciprocal or not, a
feature for the tie strength of 𝑒𝐴𝐶 denoting the interaction frequency between users 𝐴 and
𝐶, and also a feature for tie strength of 𝑒𝐴𝐵 and 𝑒𝐵𝐶 . The tie strength features are modeled
via kernel density estimation. For Weibo dataset, we also define six features based on user
demographics — gender and status of three users — with their kernel density estimates
respectively (Cf. Eq. (3)).

Temporal factor. Temporal factors are used to model the interrelations between the states
of one triad at different timestamps (Cf. Eq. (5)).

Social factor. We define one correlation function for social factors to see whether any two
triads have the same triadic tie strength dynamics patterns (Cf. Eq. (6)).

Prediction. With the estimated parameters 𝜃, we can predict the labels of unknown
variables 𝑦𝑖 =? by finding a label configuration that maximizes the objective function — i.e.,
𝑌 ⋆ = argmaxℛ(𝑌 |X, 𝐺, 𝜃). Specifically, we use the learned model to calculate the marginal
distribution of each candidate triad with unknown variable and finally assign each candidate
triad with a label of the maximal probability.
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5 TRIADIC TIE STRENGTH DYNAMICS PREDICTION

In this section, we conduct various experiments to demonstrate the effectiveness of our
proposed TRIST model and the predictability of triadic tie strength dynamics in social
networks.

5.1 Experiment Setup

Settings. The task is to predict whether ties in the candidate triads that become closed at
𝑡 will become weakened within a timeframe ∆𝑡. We set up two prediction cases (Weibo1
and Weibo2) using the Weibo dataset and one case (Mobile) using the Mobile dataset. In
Weibo1, we use a network over the first 10 days of the window for experiments (𝑡 = 5 and
∆𝑡 = 5) and predict the dynamics status in day 𝑡′ (𝑡′ = 10, ∆𝑡 = 5) of newly closed triads
(formed on the 5𝑡ℎ day). In Weibo2, we incrementally observe the network and use the first
20 days for prediction experiments (𝑡 = 10 and ∆𝑡 = 10), predicting the dynamics status on
day 𝑡′ (𝑡′ = 20 and ∆𝑡 = 10) of closed triads (formed on the 10𝑡ℎ day). Using the Mobile
dataset, we construct an experimental case Mobile by using the same setting as that of
the Weibo1 case. Similar to the observations in Section 3, for each prediction case, we use
three different measures to determine the dynamics status of social triads, including the
interaction frequencies of both links 𝐼𝐹𝐴𝐵+𝐵𝐶 together, and also these two links separately
𝐼𝐹𝐴𝐵 and 𝐼𝐹𝐵𝐶 .

Evaluation. We use 50% of the observed closed triads as a training set and the remaining
triads as a test set. We repeat the prediction experiments ten times, and report the average
performance in terms of Accuracy, Precision, Recall, and F1-score.

Comparisons. We compare the proposed TRIST model with four classical classification
baselines, including logistic regression, support vector machine (SVM), decision tree (C4.5),
and Näıve Bayes. The TRIST model is implemented in C++, and all experiments are
performed on a PC running Windows 7 with an AMD Opteron (TM) Processor 6276
(2.3GHz) and 4GB memory. As to the baseline methods, we employ the open-source software
Weka with default parameters.

SVM uses all the same features defined in the attribute factors of our TRIST model
for each triad to train a corresponding classification model, and then use the classification
model to predict triadic tie strength dynamics in the test data.
Logistic Regression uses all the same features defined in the attribute factors of our

TRIST model for each triad to train a corresponding classification model, and then use the
classification model to predict triadic tie strength dynamics in the test data.

Decision Tree uses all the same features defined in the attribute factors of our TRIST model
for each triad to train a corresponding classification model, and then use the classification
model to predict triadic tie strength dynamics in the test data.

Näıve Bayes uses all the same features defined in the attribute factors of our TRIST model
for each triad to train a corresponding classification model, and then use the classification
model to predict triadic tie strength dynamics in the test data.
TRIST represents the proposed model that trains a factor graph model with all three

types of factors — attribute factors, social factors, and temporal factors.
TRIST-ST uses all the same features defined in the attribute factors of our TRIST model

for each triad. The difference lies in that TRIST-ST leverages kernel-based attribute factors
to capture the feature correlations.
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Table 5. Triadic tie strength dynamics prediction performance.

Data Method
𝐼𝐹𝐴𝐵+𝐵𝐶 𝐼𝐹𝐴𝐵 𝐼𝐹𝐵𝐶

Accu. Prec. Rec. F1 Accu. Prec. Rec. F1 Accu. Prec. Rec. F1

Logistic .538 .541 .538 .538 .557 .595 .557 .403 .591 .560 .591 .516
SVM .540 .547 .540 .537 .557 .632 .557 .402 .592 .351 .592 .440

Weibo1 Decision Tree .527 .530 .527 .527 .553 .545 .553 .438 .589 .565 .589 .555
NaiveBayes .535 .538 .535 .535 .556 .563 .556 .405 .566 .551 .566 .554
TRIST .844 .940 .756 .838 .859 .944 .756 .840 .864 .972 .782 .867

TRIST-ST .541 .559 .579 .569 .554 .727 .006 .013 .580 .585 .949 .724

Logistic .535 .534 .535 .534 .575 .634 .575 .424 .583 .540 .583 .531
SVM .537 .540 .537 .537 .573 .328 .573 .417 .614 .604 .614 .491

Weibo2 Decision Tree .532 .532 .532 .532 .556 .502 .556 .462 .590 .558 .590 .553
NaiveBayes .545 .544 .545 .544 .570 .520 .570 .432 .574 .566 .574 .569
TRIST .809 .889 .723 .797 .797 .821 .702 .757 .826 .947 .749 .836

TRIST-ST .540 .562 .599 .580 .553 .818 .007 .014 .597 .603 .939 .735

Logistic .601 .558 .601 .510 .574 .572 .574 .573 .608 .557 .608 .516
SVM .605 .366 .605 .456 .568 .560 .568 .478 .615 .378 .615 .468

Mobile Decision Tree .605 .366 .605 .456 .570 .563 .570 .479 .615 .378 .615 .468
NaiveBayes .604 .365 .604 .455 .568 .562 .568 .562 .615 .570 .615 .468
TRIST .750 .738 .911 .815 .705 .750 .714 .732 .764 .756 .907 .824

TRIST-ST .604 .614 .937 .742 .573 .618 .630 .626 .610 .620 .937 .746

TRIST-A, TRIST-T, and TRIST-S are three reduced versions of our TRIST model that
ignore the corresponding factors.

5.2 Prediction Results

Performance. Table 5 reports the prediction performance of triadic tie strength dynamics
as measured by interaction frequencies 𝐼𝐹𝐴𝐵+𝐵𝐶 , 𝐼𝐹𝐴𝐵 , and 𝐼𝐹𝐵𝐶 . Generally, the results
in both Weibo and Mobile show that our TRIST model clearly outperforms the baseline
methods in each case.
In terms of F1-score, the proposed TRIST model achieves a (25%, 44%) improvement

compared with baselines when triadic tie strength dynamics is measured by 𝐼𝐹𝐴𝐵+𝐵𝐶 , a
(16%, 44%) improvement when measured by 𝐼𝐹𝐴𝐵, and a (26%, 42%) improvement when
measured by 𝐼𝐹𝐵𝐶 . Similarly, the three tables show that the proposed TRIST model also
outperforms other methods significantly in terms of other evaluation metrics — Precision,
Recall, and Accuracy.
On average, by using the same prediction settings, the results in the Weibo1 prediction

case in Table 5 reveal about (10%, 15%) greater predictability of triadic tie strength dynamics
in terms of Accuracy than those of Mobile cases. Meanwhile, we also note that the prediction
performance with a short ∆𝑡 (5 days) in the Weibo1 case is better than that with a relatively
long ∆𝑡 (10 days) in the Weibo2 case, in terms of both Accuracy and F1-score.

The reasons that TRIST outperforms Logistic Regression, SVM, Decision Tree, and näıve
Bayes come from 1) the modeling of structural correlations of triadic tie strength dynamics
captured by temporal and social factors in our TRIST model, and 2) the use of kernel
densities for modeling attribute features.
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Fig. 12. Effects of different kernel functions in TRIST. X-axis: Different test cases. Y-axis: F1-score.
The TRIST model with different kernel functions yields similar prediction performance.

Effects of Kernel Density. We demonstrate the power of TRIST’s kernel density by
comparing the reduced version of our model TRIST-ST with baseline methods that use
the same set of features. The difference lies in that in TRIST-ST, the kernel density is
incorporated to smooth the discrete feature values. In Table 5, we can see that in most cases,
TRIST-ST yields better prediction performance than the alternative methods. For example,
by our methodology, the predictive power of TRIST-ST significantly outperforms the other
four methods, with a (5%, 23%) increase of F1-score in the Mobile case.

We also examine the effects of different kernel density functions on the prediction power
of our method. Specifically, we use six different kernels: Gaussian, Tophat, Epanechnikov,
exponential, linear, and cosine. The details of these six kernels are introduced in Section 4.1.
The prediction results on triadic tie strength dynamics as measured by 𝐼𝐹𝐴𝐵+𝐵𝐶 in Weibo1,
Weibo2, and Mobile cases are shown in Figure 12. Clearly, we can see that the TRIST model
with different kernel functions yields similar prediction performance. We conclude that our
TRIST model is robust with respect to the choice of different kernel functions.

Factor Contribution Analysis. To predict the dynamics status of triadic relationships,
we devise three kinds of factors in our proposed model TRIST. To explore the contributions of
different factors to the prediction task, we remove each type of factor and keep the remaining
two in a series of experiments. For this purpose, we have three versions of our model, i.e.,
TRIST-A (removing attribute factors), TRIST-T (removing temporal factors), and TRIST-S
(removing social factors). The results of the three reduced methods and TRIST are shown in
Figure 13. Clearly, we can see that the removal of each type of factor results in a clear drop
in the prediction performance. By removing social factors, the F1-score of TRIST-S model
deceases slightly compared to the original model TRIST in all prediction cases. However, the
drops of F1-score when removing attribute or temporal factors (TRIST-A or TRIST-T) are
much more significant than TRIST-S’s performance drops, which indicates the importance
of attribute and temporal factors in predicting triadic tie strength dynamics. Specifically,
TRIST-A achieves better prediction performance than TRIST-T, which means that temporal
factors are more telling than attribute factors for predicting the dynamics status of social
triads in TRIST model. These experimental results further demonstrate the effectiveness of
our TRIST model by modeling the attribute, temporal, and social correlations examined in
Section 3.
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Fig. 13. Factor contributions for triadic tie strength dynamics Prediction. 𝑥-axis: different prediction
cases; 𝑦-axis: Prediction performance in terms of F1-score. TRIST is the proposed model; TRIST-A is
the reduced version of TRIST without modeling attributed factors; TRIST-T is the reduced version of
TRIST without modeling temporal factors; TRIST-S is the reduced version of TRIST without modeling
social factors.

Training/Test Ratio. We analyze the effects of different training samples on the prediction
performance of triadic tie strength dynamics. Figure 14 shows the prediction performance
with different ratios of training samples in Weibo1, Weibo2, and Mobile. First, we observe
that as training ratios increase, the TRIST model gradually achieves better performance in
terms of both F1-score and Accuracy and reaches a stable performance when using only 5%
to 10% training samples. Second, we can see that the results in different prediction cases
show similar trends to those obtained by increasing the number of training samples, in three
sub-figures. The results indicate a positive effect of the size of training data on predicting
triadic tie strength dynamics in social networks. At the same time, we also conclude that
the predictability of triadic tie strength dynamics can be largely revealed by a small set of
labeled triads.

Convergence. We conduct experiments to see the convergence of our TRIST model —
the number of iterations of our learning algorithm. The convergence properties of TRIST
with different kernel density functions by using the default training data (50%) are plotted
in Figures 15 (a), (b), and (c). From Figures 15 (a) and (b) we observe similar convergence
patterns, that is, the TRIST model gradually reaches convergence states within 50 to 60
iterations. From Figure 15 (c) we observe that the TRIST model immediately converges
when the number of iterations approaches around 70. From the top three sub-figures of
Figure 15 we also notice that different kernels have limited effects on TRIST’s convergence.
By using different ratios of training data, we report the convergence of our proposed model
with the default kernel function (Gaussian) in Figures 15 (d), (e), and (f). In the bottom
three sub-figures of Figure 15, we again find that the model converges gradually in Weibo
cases, and reaches convergence suddenly in Mobile case within 100 iterations. We also find
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Fig. 14. Performance of triadic tie strength dynamics prediction with different percentage of training
data. 𝑥-axis: different ratios of training set; 𝑦-axis: prediction performance when measuring 𝐼𝐹𝐴𝐵+𝐵𝐶

using TRIST model in terms of both F1-score (blue line) and Accuracy (red line).
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Fig. 15. Convergence of TRIST. 𝑥-axis: the iteration time 𝑚 in Eq. 13 of our learning algorithm;
𝑦-axis: F1-score. (a,b,c). Convergence rates with different kernel functions in different prediction cases
(50% training data); (d,e,f). Convergence rates with different training data in different prediction cases
(Gaussian kernel).

that the TRIST model with 10% training data (red line) has the lowest convergence rate
compared with the model with more training data. Overall, Figure 15 demonstrates that
the proposed TRIST model can reach the convergence state quickly.

6 RELATED WORK

The social triad, one of the simplest groupings of individuals, serves as the basis of social
network analysis, and has been studied extensively in both sociology and network science.
The study of social triads can help understand emergent network distributions and social
phenomena at the macroscopic level.

The study of “triad” was pioneered by Simmel in 1950 [Simmel 1950]. Since then, sociolo-
gists have worked out several profound theories on triadic relationships in social networks.
Heider [Heider 1958] developed the theory of social balance, in which the balance state is
reached when there are three positive relationships, or two negatives with one positive, in a
social triad. Essentially, the balance theory explains the real-world social phenomenon, that
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is “A friend of my friend is my friend” and “The enemy of my enemy is my friend.” Davis et
al. [Davis and Leinhardt 1972] took the theory of social status in directed networks further.
Status theory posits that by reversing the direction and flipping the sign to positive of each
negative edge in a triad, a social triad complies with status theory if the resulting triad
is acyclic. Recently, Leskovec et al. [Leskovec et al. 2010] suggested an alternate theory of
status that provides a different organizing principle for signed networks. The social theories
developed on triad structure successfully characterize the nature of social behaviors among
three people in social networks. However, previous studies are limited by explaining the
phenomena of triadic relationships in a static way or relying on the sign of relationships.
This work is the first to propose to examine the dynamics status of triadic relationships
among three people over time without the sign of relationships.

Besides the well-known social theories, a large body of work has been devoted to modeling
and predicting the process of triadic closure [Huang et al. 2015, 2014; Kossinets and Watts
2006; Zignani et al. 2014]. Romero and Kleinberg [Romero and Kleinberg 2010] developed
a framework to understand the closure process of social triads in directed networks. Lou
et al. [Lou et al. 2013] presented a machine learning model to predict whether an open
triad will become closed in Twitter. Fang and Tang [Fang and Tang 2015] recovered the
formation process of a closed social triad in social networks. Moreover, much work has
demonstrated that triadic closure can be identified as one of the fundamental dynamical
principles in network formation and evolution [Klimek and Thurner 2013; Leskovec et al.
2008; Li et al. 2013b]. For example, preferential triadic closure has been proposed to infer
link formation across different social networks [Dong et al. 2012]. In addition, triadic closure
can benefit many applications in social networks, such as characterizing tie strength [Sintos
and Tsaparas 2014], influence diffusion [Zhang et al. 2015], and spam detection [Becchetti
et al. 2008]. The major difference between our work and previous work lies in that we focus
on the dynamics of triadic relationships over time after a closed triad is formed, while the
modeling of triadic closure focuses on the transition from an open triad to a closed one.

Many researchers have adopted tie strength as an analytic framework for studying individ-
uals and organizations [Granovetter 1995; Schaefer et al. 1981] and paid a lot of attention to
measuring the tie strength of social relations. Using survey data on friendship ties, Marsden
et al. constructed and validated measures of tie strength [Marsden and Campbell 1984].
Krackhardt validated that a ”Simmelian tie” can strengthen the relationships between the
individuals in social triads or groups [Krackhardt 1999]. Gilbert and Karahalios proposed
a predictive model to map social media data to tie strength and distinguished them into
strong and weak ties [Gilbert and Karahalios 2009]. Jones et al. used online interaction data
(specifically, Facebook interactions) to successfully identify real-world strong ties [Jones et al.
2013]. Xiang et al. developed an unsupervised model to estimate relationship strength from
interactions [Xiang et al. 2010].

On the other hand, less efforts are devoted to tie strength dynamics. Saramäki et al. found
that the distribution of people that distributed their social investment over different social
ties among their ego networks tended to persist over time [Saramäki et al. 2014]. Patil et al.
presented a model to predict whether a group will remain stable or shrink over time [Patil
et al. 2013]. Burke and Kraut investigated the factors that associated with tie strength
dynamics. They found that tie strength increased with both one-on-one communication,
such as posts, comments, and messages, and through reading friends’ broadcasted content,
such as status updates and photos [Burke and Kraut 2014]. However, most of them focus
on understanding the dynamics status of social ties and communities, or measuring the tie
strength in social networks, the structural factors associated with tie strength dynamics are
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not well addressed. As far as we know, our work is the first to investigate the dynamics
status of triadic relationships from a microscopic view in social networks.

7 CONCLUSION

In this work, we discover the interaction dynamics in a triad after closure. By tracing the
interaction dynamics in two social networks — Weibo and Mobile — we find that the
formation of the third link in a triad will demote the interaction strength of the other two
links. We demonstrate that in around 80% of closed social triads, the strength of the first
two ties become weakened in both online social media and mobile social networks. We also
uncover an interesting phenomenon, that is, both males and celebrities tend to maintain
more weakened triadic relationships than females and ordinary users.
By experimenting on these two datasets, we formalize the triadic tie strength dynamics

prediction problem, and present a TRIST model to solve it by incorporating user demo-
graphics and temporal and structural correlations. Extensive experimental results show that
our proposed model outperforms comparison methods by up to 30% in terms of F1-score.
Furthermore, we demonstrate that our methodology offers a greater-than-82% potential
predictability for inferring the dynamics status of social triads in both networks.
Despite the rich set of results on triadic tie strength dynamics, there is still much room

for future work. First, the underlying mechanism of the evolution of triadic relationships is
still largely untouched. Second, we need to connect the microscopic triadic principles with
network scaling phenomena at the macro level. Finally, it is also necessary to examine the
dynamics status of social triads in other types of networks, such as collaboration networks,
Facebook, location-based social networks, and so on.
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