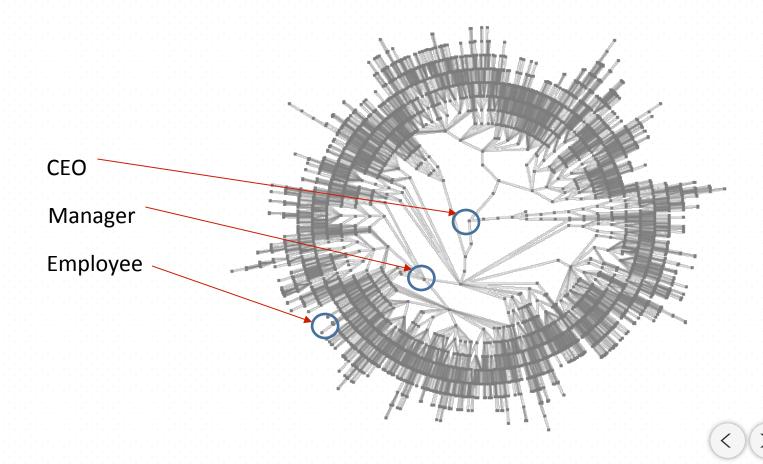
$@IC^2S^2$

Inferring Social Status and Rich Club Effects in Enterprise Communication Networks

Yuxiao Dong, Jie Tang, Nitesh V. Chawla Tiancheng Lou, Yang Yang, Bai Wang

Social Status

Social status is defined as the relative rank or position that an individual holds in a social hierarchy.



Enterprise Communication Data

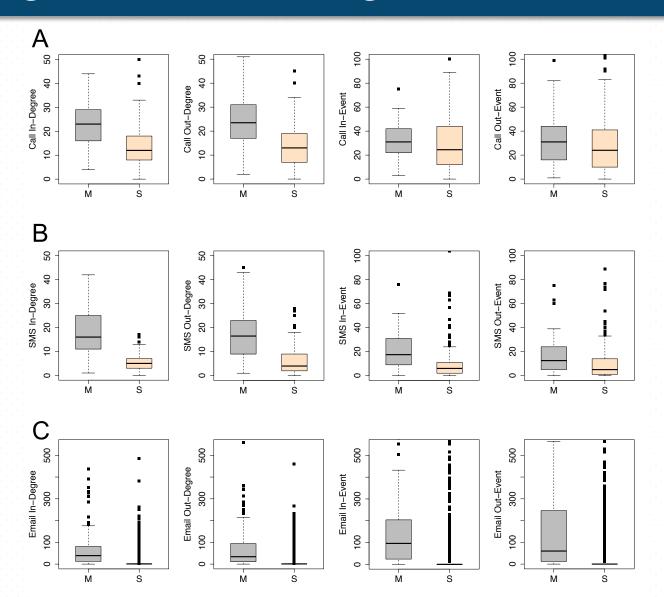
- > Two Companies and Three Communication Channels
 - One Telecommunication Company
 - Phone call network (CALL)
 - Short-message network (SMS)
 - 50 managers and 182 subordinates
 - Enron Inc.
 - Email communication network (EMAIL)
 - 155 managers and 22232 subordinates

attributes	CALL	SMS	EMAIL
#nodes	232	232	22477
#edges	3340	3406	44728
clustering coefficient	0.3326	0.4761	0.1241
associative coefficient	0.1195	-0.0894	-0.2153

Problems

What is the interplay of social status with communication behavior?

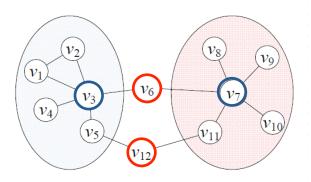
High-status has high centralities?



M: Manager

S: Subordinate

Structural Hole vs. Status



- Structural holes serve as intermediaries between others who are not directly connected [1].
- We use HIS algorithm [2] to estimate the likelihood of each node in the network to span as structural hole

	CALL	SMS	EMAIL
M as SH	0.700 ****	0.550 ****	0.430 ***
M as SH (random)	0.207	0.207	0.007
S as SH	0.300	0.450 ****	0.570 ***
S as SH (random)	0.793	0.793	0.993

- Structural holes extracted from enterprise communication network structure reveal the social status of staff in the company.
- Managers usually need to operate the responsibility of correspondents and organizers within the company, especially for the experience for connecting different groups to cooperate.

^{*}p < 0.05;

^{**}p < 0.01;

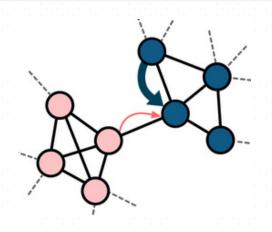
^{***}p < 0.001;

^{****}p < 0.0001

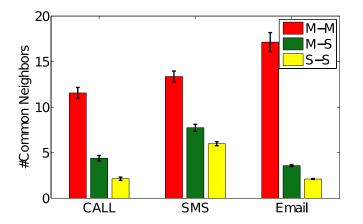
^[1] R. S. Burt. Structural Holes: The Social Structure of Competition. Harvard University Press, 1992.

^[2] Tiancheng Lou, Jie Tang. Mining Structural Hole Spanners in Information Diffusion. WWW 2013.

Link Homophily vs. Status

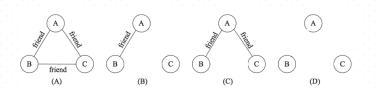


- Homophily is the tendency of individuals to associate and bond with similar others.
- Link homophily [15] tests whether two individuals who share more common neighbors will tend to have similar social status in the company.



- Two individuals are much more likely to be two managers in the company if they share more common contacts.
- Managers' ability of creating and maintaining social connections in enterprise networks is more prominent than subordinates'.

Social Balance vs. Status

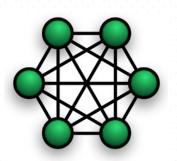


- A social triangle satisfies social balance theory, if all three users are friends or only one pair of them are friends.
- Assume two users are friends if they communicate each other at least once.

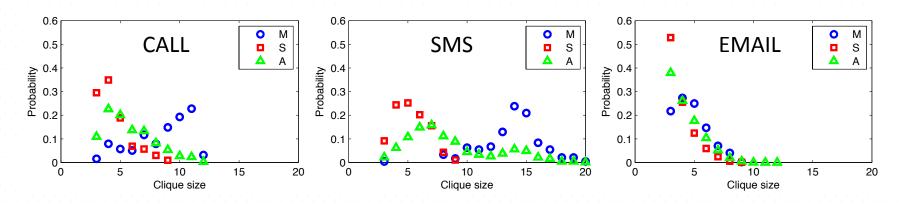
	M (CALL)	S (CALL)	M (SMS)	S (SMS)	M (EMAIL)	S (EMAIL)
M-sb	0.569****	0.348****	0.546****	0.468****	0.455****	0.047***
S-sb	0.174***	0.254*	0.289	0.299	0.066**	0.082****
sb	0.340	0.312	0.325	0.311	0.165	0.124

- Managers' overall balance ratios are larger than the subordinates' across all the three channels.
- Managers are more likely to form balanced structure among their manager-friends, and the subordinates with subordinates.

Social Clique vs. Status



- A clique is a subset of nodes such that for any two nodes, there exists an edge connecting them.
- In social sciences, clique is used to describe a group of persons who interact with each other more regularly and intensely than others.



- The size of the maximum clique in 50-manager CALL and SMS networks and 155-manager EMAIL network is 12, 20, and 9, respectively.
- The size of the maximum clique in 182-subordinate CALL and SMS networks and 22232-subordinate EMAIL network is 9, 10, and 9, respectively.

Can social status be inferred from communications?

Input: $G = (V, E, Y^L), X$

Output: $f(G, \mathbf{X}) \rightarrow (\mathbf{Y}^{\mathsf{U}})$

- > V: node set
- > E: edge set
- > X: attribute matrix
- > Y^L: nodes with labeled social status
- > Y^U: nodes with unlabeled social status

	Network	Precision	Recall	F1	Accuracy			
	Naïve Bayes							
	Bayes Network	Data:						
CALL	Logistic Regression							
	Conditional Random Fields	CALL ne						
	Factor Graph Model	SMS network EMAIL network						
	Naïve Bayes							
	Bayes Network							
SMS	Logistic Regression							
	Conditional Random Fields	10% as						
	Factor Graph Model		test dat					
	Naïve Bayes	3070 d3	test dat	u				
	Bayes Network							
EMAIL	Logistic Regression							
	Conditional Random Fields							
	Factor Graph Model							

	Network	Precision	Recall	F1	Accuracy			
CALL	Naïve Bayes							
	Bayes Network	Comp	Computational Models:					
	Logistic Regression							
	Conditional Random Fields	Naïve E	Naïve Bayes					
	Factor Graph Model		, Network					
SMS	Naïve Bayes		Regress	sion				
	Bayes Network		Conditional Random Fields					
	Logistic Regression	Corraiti						
	Conditional Random Fields	Factor	Factor Graph Model					
	Factor Graph Model		Factor Graph Model					
	Naïve Bayes							
	Bayes Network							
EMAIL	Logistic Regression							
	Conditional Random Fields							
	Factor Graph Model							

	Network	Precision	Recall	F1	Accuracy
	Naïve Bayes				
CALL	Bayes Network	Evalua	ation M	letrics:	
	Logistic Regression				
	Conditional Random Fields	Precisio	n		
	Factor Graph Model	Recall			
	Naïve Bayes	F1 scor	e		
	Bayes Network	Accura			
SMS	Logistic Regression	/ teedra	- y		
	Conditional Random Fields				
	Factor Graph Model				
	Naïve Bayes				
	Bayes Network				
EMAIL	Logistic Regression				
	Conditional Random Fields				
	Factor Graph Model				

	Network	Precision	Recall	F1	Accuracy
	Naïve Bayes	0.7334	0.7625	0.7416	0.7625
	Bayes Network	0.7409	0.6934	0.7110	0.6934
CALL	Logistic Regression	0.7065	0.6795	0.6904	0.6795
	Conditional Random Fields	0.8078	0.8095	0.8086	0.8095
	Factor Graph Model	0.8514	0.8508	0.8511	0.8508
	Naïve Bayes	0.8693	0.8734	0.8648	0.8734
	Bayes Network	0.8497	0.8512	0.8483	0.8512
SMS	Logistic Regression	0.8129	0.7850	0.7935	0.7850
	Conditional Random Fields	0.8720	0.8761	0.8740	0.8760
	Factor Graph Model	0.9321	0.9276	0.9298	0.9276
	Naïve Bayes	0.8847	0.8993	0.8847	0.8598
	Bayes Network	0.8936	0.9054	0.8164	0.8755
EMAIL	Logistic Regression	0.8761	0.8772	0.7653	0.8483
	Conditional Random Fields	0.9033	0.8902	0.8967	0.8902
	Factor Graph Model	0.9319	0.9383	0.9373	0.9383

	Network	Precision	Recall	F1	Accuracy			
	Naïve Bayes							
	Bayes Network	Predictability:						
CALL	Logistic Regression							
	Conditional Random Fields	85% of individuals' Social Status						
	Factor Graph Model	can be revealed from mobile						
	Naïve Bayes	phone call network, and over						
	Bayes Network	92% in both messaging and email networks.						
SMS	Logistic Regression							
	Conditional Random Fields	Cilianii	Ctworks	•				
	Factor Graph Model							
	Naïve Bayes							
	Bayes Network							
EMAIL	Logistic Regression							
	Conditional Random Fields							
	Factor Graph Model							

•

Conclusion

- Unveil the social behavioral differences of individuals with different social status across three communication channels.
 - High-status individuals are more likely to be spanned as structural holes.
 - The principle of homophily, social balance and clique theory generally indicate a "rich club" maintained by high-status individuals.
- Propose computational models to demonstrate the predictability of social status in communication networks.
 - Over 85% of individuals' status can be revealed from call networks.
 - Over 92% in both mobile messaging and email networks.

Thanks

Q&A

Yuxiao Dong, Jie Tang, Nitesh V. Chawla, Tiancheng Lou, Yang Yang, Bai Wang.

Inferring Social Status and Rich Club Effects in Enterprise Communication Networks. PLoS ONE 10 (3): e0119446. 2015