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Semi-Supervised Learning on Graphs
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Graph Neural Network (GNN)

Graph Convolution Network:
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» Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. In ICLR 2017



Graph Neural Networks

Hk+1 — G(ﬁH(R)W(R)) 1. Each node is highly dependent with its neighborhoods,
making GNNs non-robust to noises

a deterministic propagation
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« Zugner D, Akbarnejad A, Ginnemann S. Adversarial attacks on neural networks for graph data. In KDD 2018.




Graph Neural Networks

Hk+1 — a(ﬁH(k)W(k)) 1. Each node is highly dependent with its neighborhoods,
making GNNs non-robust to noises

2. Stacking many GNNs layers may cause over-smoothing.

feature propagation is
Laplacian smoothing,
coupled with
non-linear transformation

* Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised learning. In AAA/I'18.
* Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node classification. In /CLR, 2020.



Graph Neural Networks

1. Each node is highly dependent with its neighborhoods, making GNNs non-robust to noises

2. Stacking many GNNs layers may cause over-smoothing.

3. Under semi-supervised setting, standard training method is easy to over-fit the scarce label
information.

St&ndard training method for GNN:

H**1 = g(AHOW )

j‘>[ GNN Jj‘> Loss function:

y1log(¥1) + y3log(¥2) + y3log(¥3)

2 45 Cannot fully leverage
unlabeled data




Recent advances in Semi-Supervised Image Classification

* Improving models’ generalization through image data augmentation and
consistency regularization.

Consistency regularization
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» Berthelot D, Carlini N, Goodfellow I, et al. Mixmatch: A holistic approach to semi-supervised learning. In NIPS’19.



Graph Random Neural Network (GRAND)

« Consistency Regularized Training:
— Generates S data augmentations of the graph

— Optimizing the consistency among S augmentations of the graph.

S Augmentations?
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* Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
* Code & data for Grand: https://github.com/Grand20/grand
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https://arxiv.org/abs/2005.11079
https://github.com/Grand20/grand

Graph Random Neural Network (GRAND)

« Random Propagation (DropNode + Propagation):
— Enhancing robustness: Each node is enabled to be not sensitive to specific neighborhoods.
— Mitigating over-smoothing and overfitting: Decouple feature propagation from feature transformation.

Random Propagation
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* Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
« Code & data for Grand: https://qgithub.com/Grand20/grand
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Random propagation: DropNode vs Dropout

* Dropout drops each element in X independently
* DropNode drops the entire features of selected nodes, i.e., the row vectors of X,
randomly
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* Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
* Code & data for Grand: https://github.com/Grand20/grand
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Graph Random Neural Network (GRAND)
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Random Propagation as data augmentation

* Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
« Code & data for Grand: https://qgithub.com/Grand20/grand
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GRAND: Consistency Regularization

Distributions of a node
after augmentations
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* Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
* Code & data for Grand: https://github.com/Grand20/grand
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Graph Random Neural Networks (GRAND)

Input:
Adjacency matrix A, feature matrix X € R™*9_times of augmentations
in each epoch S, DropNode probability &.
Output:
Prediction Z.
1: while not convergence do
22 fors=1:Sdo

3: Apply DropNode via Algorithm 1: X(s) ~ DropNode(X, &).
4: Perform propagation: )_(( ) ﬁ Zlkio AkX(), S Auc;(:::;?;fl ONS
5: Predict class distribution using MLP: Z6) = P(Ylfs); 0).

6:  end for
Compute supervised classification loss L, via Eq. 4 and consis-
tency regularization loss via Eq. 6.

8:  Update the parameters © by gradients descending:

Vo -Esup +ALcon

9: end while
10: Output prediction Z via Eq. 8.

Consistency Regularized Training Algorithm

* Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
* Code & data for Grand: https://github.com/Grand20/grand
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Graph Random Neural Network (GRAND)

- With Consistency Regularization Loss:

— Random propagation can enforce the consistency of the classification confidence between
each node and its all multi-hop neighborhoods.

Ec (Ceon) & RE(W) = 210 22(1 — 2)*Var, (A,X - W)
Ry (W) = 1%5 > [(Xj W)Y (R - )]
Rbo(W) = +— th Z [x?h Z 22 (1 — zi)2(Aij)2]

«  With Supervised Cross-Entropy Loss:

— Random propagation can enforce the consistency of the classification confidence between
each node and its labeled multi-hop neighborhoods.

* Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020

* Code & data for Grand: https://qgithub.com/Grand20/grand
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Results

Method Cora Citeseer Pubmed
GCN [19] 81.5 70.3 79.0
GAT [32] 83.0+0.7 72.540.7 79.010.3

APPNP [20] 83.8+0.3 71.61+ 0.5 79.7 = 0.3
Graph U-Net [11] 84.44-0.6 73.210.5 79.610.2
SGC [36] 81.0 0.0 71.9 £ 0.1 789 +£0.0
MixHop [1] 81.9+ 04 71.4+0.8 80.8+0.6
GMNN (28] 83.7 72.9 81.8
GraphNAS [12] 84.2+1.0 73.11+0.9 79.61+0.4
GraphSAGE [16] 78.9+0.8 67.4+0.7 77.8+0.6
FastGCN [7] 81.410.5 68.8+0.9 77.6+0.5
VBAT [10] 83.6+0.5 74.010.6 79.9+0.4
G3NN [24] 82.540.2 74.440.3 77.9 +0.4
GraphMix [33] 83.9+0.6 74.540.6 81.0+0.6
DropEdge [29] 82.8 72.3 79.6
GRAND 85.44-0.4 75.4+0.4 82.71+0.6

Accuracy Lift Over GCN (%)

Pubmed

Cora Citeseer

Instead of the marginal improvements by
conventional GNN baselines over GCN,
GRAND achieves much more significant
performance lift in all three datasets!

* Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
« Code & data for Grand: https://qgithub.com/Grand20/grand
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Results

Table 5: Results on large datasets.

Cora Coauthor Coauthor Amazon Amazon Citation

Method Full CS Physics Computer  Photo CS

GCN 6224+0.691.1+:05928+1.0 82.6 24 91.24+1.2 499+20
GAT 519+1.5905+0.6925+0.9 78.0+ 19.0 85.7 +20.3 49.6 = 1.7

GRAND 63.5 0.6 92.9 £ 0.5 94.6 = 0.5 85.7 = 1.8 92.5 = 1.7 52.8 = 1.2

More experiments on larger graph datasets

* Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
* Code & data for Grand: https://github.com/Grand20/grand
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Evaluation of the design choices in GRAND

Loss: Lsup + ALcon
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Method | Cora Citeseer Pubmed
GCN [19] 81.5 70.3 79.0
GAT [32] 83.010.7 72.5+0.7 79.01+0.3

APPNP [20] 83.81+0.3 71.6£ 0.5 79.7 0.3
Graph U-Net [11] 84.440.6 73.21+0.5 79.6£0.2
SGC [36] 81.0 £0.0 71.9 £ 0.1 78.9 = 0.0
MixHop [1] 8194+ 0.4 71.44+0.8 80.8+0.6
GMNN [28] 83.7 72.9 81.8
GraphNAS [12] 84.24+1.0 73.1+£0.9 79.6+0.4
DropEdge [29] | 82.8 72.3 79.6
w/o CR 84.440.5 73.1+0.6 80.9+0.8
w/o mDN 84.7+£0.4 74.8+0.4 81.0%1.1
w/o sharpening 84.61+0.4 72.24+0.6 81.610.8
w/o CR & DN 83.240.5 70.3+0.6 78.5+£1.4

* Code & data for Grand: https://qgithub.com/Grand20/grand

Results

Ablation Study

1.

Each of the designed components
contributes to the success of GRAND.

GRAND w/o consistency regularization

outperforms almost all 8 non-regularization
based GCNs & DropEdge

* Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
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Generalization

1. Both the random propagation and consistency regularization improve GRAND’s generalization capability
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* Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
* Code & data for Grand: https://github.com/Grand20/grand
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* Code & data for Grand: https://github.com/Grand20/grand

Results
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Robustness

1. GRAND (with or w/0) consistency regularization is more robust than GCN and GAT.

* Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
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Results
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Over-Smoothing
1. GRAND is very powerful to relieve over-smoothing, when GCN & GAT are very vulnerable to it

* Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020
* Code & data for Grand: https://github.com/Grand20/grand
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Thanks!

Code & data for Grand: https://github.com/Grand20/grand
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