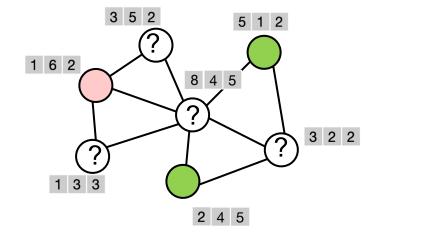


Graph Random Neural Network for Semi-Supervised Learning on Graphs

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny Kharlamov, Jie Tang

Semi-Supervised Learning on Graphs



Input: a partially labeled & attributed graph

Output: infer the labels of unlabeled nodes

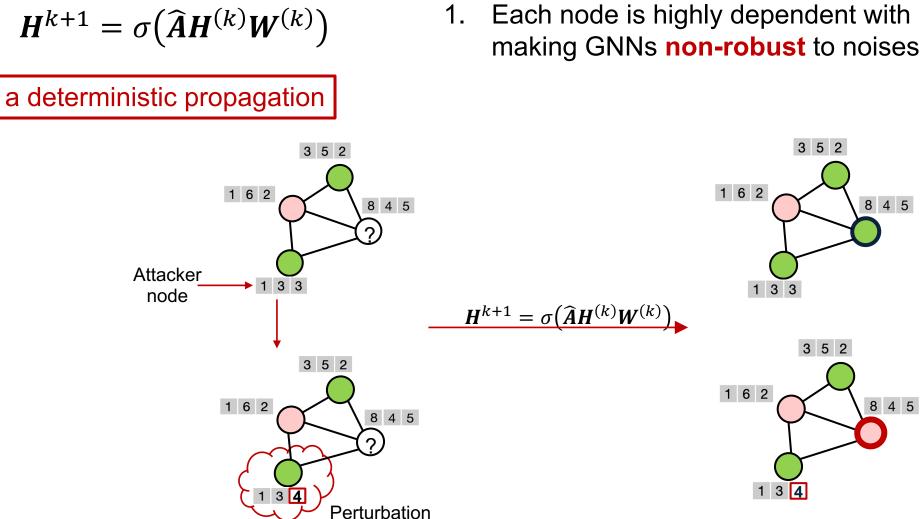
Graph Neural Network (GNN)

Graph Convolution Network:



• Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. In ICLR 2017

Graph Neural Networks



• Zügner D, Akbarnejad A, Günnemann S. Adversarial attacks on neural networks for graph data. In KDD 2018.

Each node is highly dependent with its neighborhoods, making GNNs non-robust to noises

Graph Neural Networks

$$\boldsymbol{H}^{k+1} = \sigma(\widehat{\boldsymbol{A}}\boldsymbol{H}^{(k)}\boldsymbol{W}^{(k)})$$

feature propagation is Laplacian smoothing, coupled with non-linear transformation

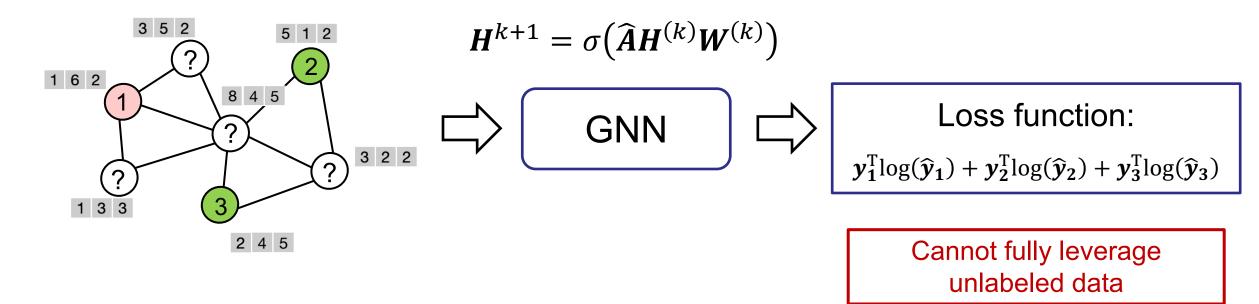
- Each node is highly dependent with its neighborhoods, making GNNs non-robust to noises
- 2. Stacking many GNNs layers may cause over-smoothing.

- Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised learning. In AAAI'18.
- Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node classification. In ICLR, 2020.

Graph Neural Networks

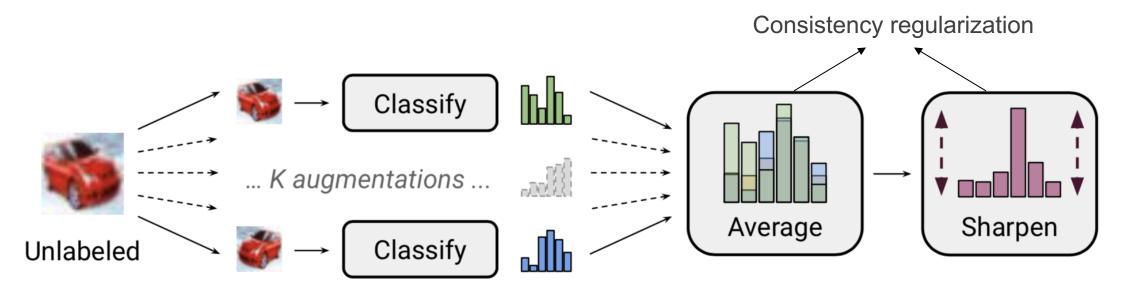
- 1. Each node is highly dependent with its neighborhoods, making GNNs non-robust to noises
- 2. Stacking many GNNs layers may cause over-smoothing.
- 3. Under semi-supervised setting, standard training method is easy to **over-fit** the scarce label information.

Standard training method for GNN:



Recent advances in Semi-Supervised Image Classification

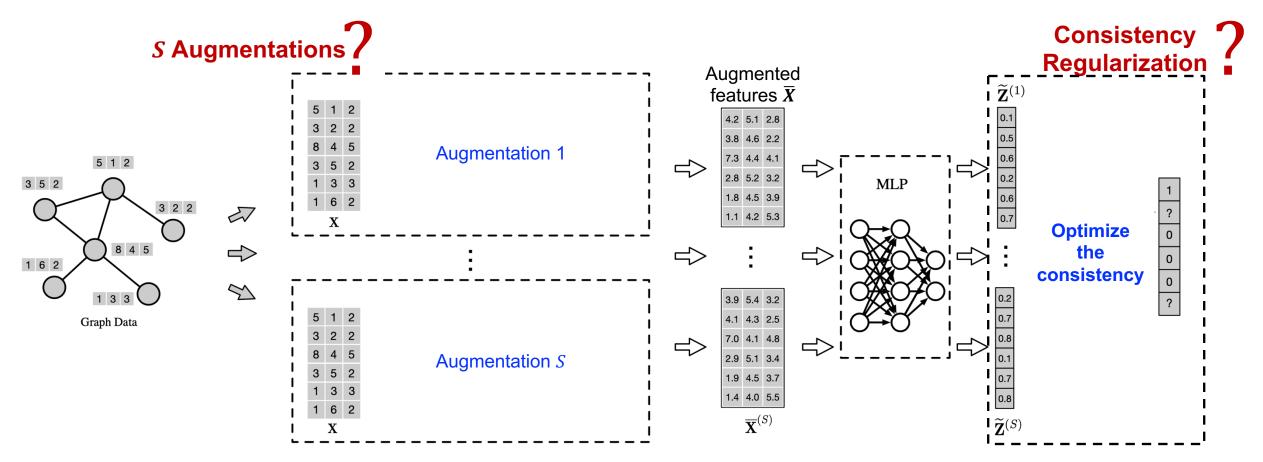
• Improving models' generalization through image data augmentation and consistency regularization.



(Picture from MixMatch's paper)

Graph Random Neural Network (GRAND)

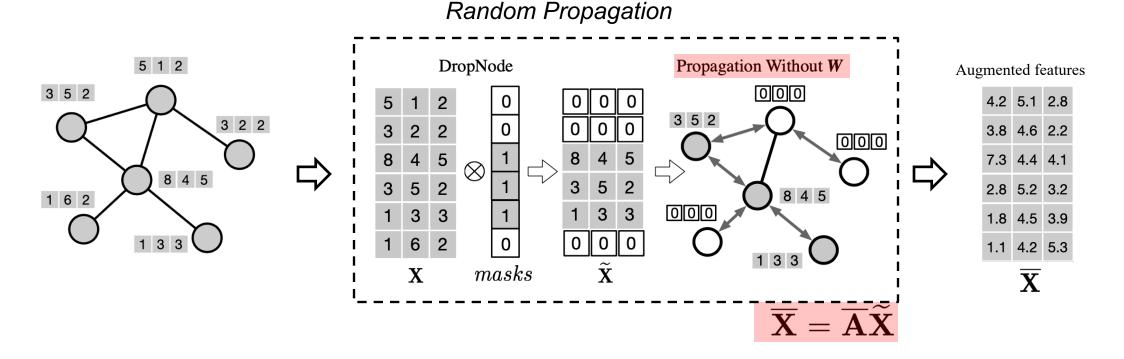
- Consistency Regularized Training:
 - Generates S data augmentations of the graph
 - Optimizing the consistency among *S* augmentations of the graph.



• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020

Graph Random Neural Network (GRAND)

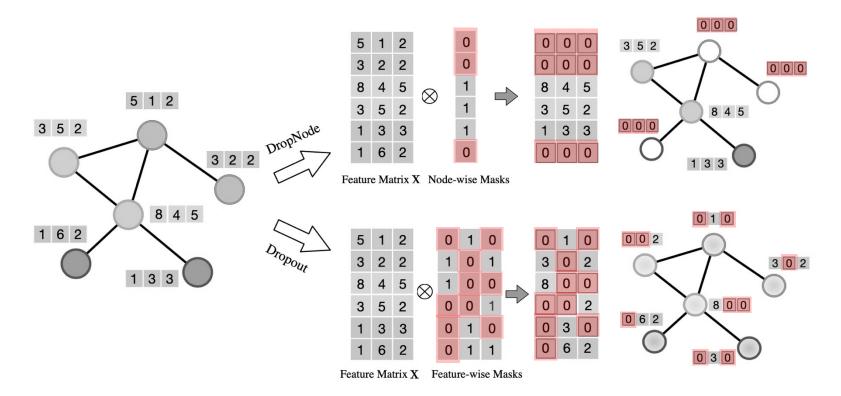
- **Random Propagation** (DropNode + Propagation):
 - Enhancing robustness: Each node is enabled to be not sensitive to specific neighborhoods.
 - Mitigating over-smoothing and overfitting: Decouple feature propagation from feature transformation.



Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020
 Code & data for Grand: https://github.com/Grand20/grand

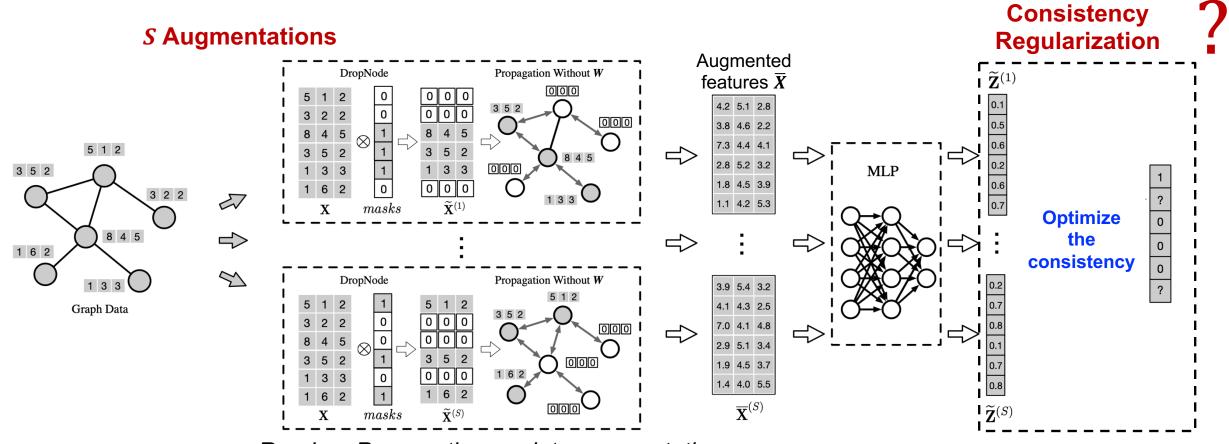
Random propagation: DropNode vs Dropout

- Dropout drops each element in *X* independently
- DropNode drops the entire features of selected nodes, i.e., the row vectors of *X*, randomly



- Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020
- Code & data for Grand: <u>https://github.com/Grand20/grand</u>

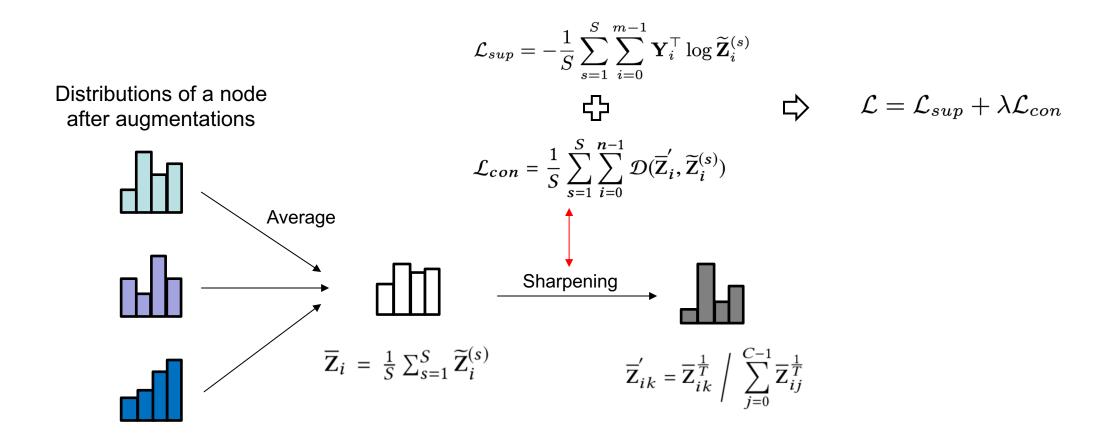
Graph Random Neural Network (GRAND)



Random Propagation as data augmentation

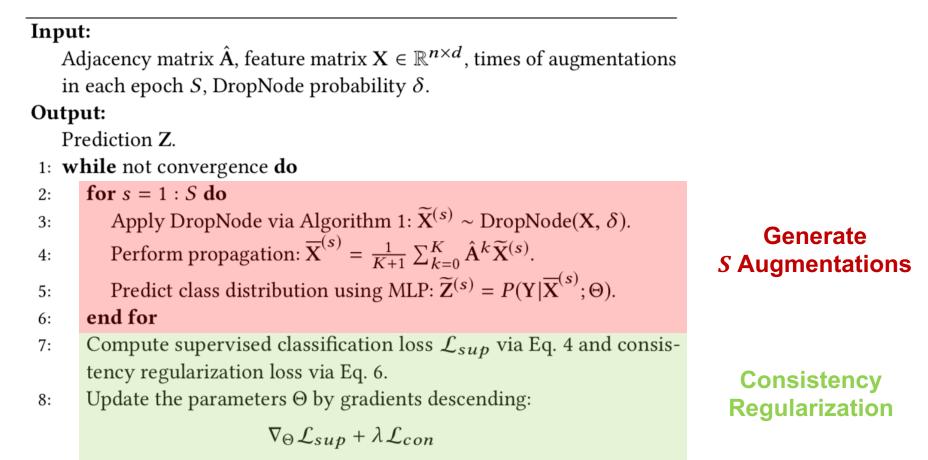
Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020
 Code & data for Grand: <u>https://github.com/Grand20/grand</u>

GRAND: Consistency Regularization



• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020

Graph Random Neural Networks (GRAND)



9: end while

10: Output prediction Z via Eq. 8.

Consistency Regularized Training Algorithm

- Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020
- Code & data for Grand: <u>https://github.com/Grand20/grand</u>

Graph Random Neural Network (GRAND)

• With Consistency Regularization Loss:

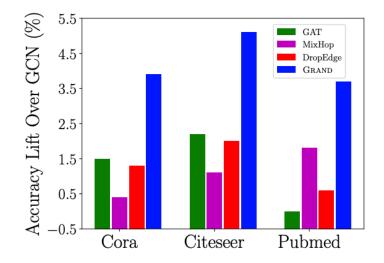
Ι

 Random propagation can enforce the consistency of the classification confidence between each node and its all multi-hop neighborhoods.

$$\begin{split} \mathbf{E}_{\epsilon} \left(\mathcal{L}_{con} \right) &\approx \mathcal{R}^{c}(\mathbf{W}) = \sum_{i=0}^{n-1} z_{i}^{2} (1-z_{i})^{2} \operatorname{Var}_{\epsilon} \left(\overline{\mathbf{A}}_{i} \widetilde{\mathbf{X}} \cdot \mathbf{W} \right) \\ \mathcal{R}_{DN}^{c}(\mathbf{W}) &= \frac{\delta}{1-\delta} \sum_{j=0}^{n-1} \left[(\mathbf{X}_{j} \cdot \mathbf{W})^{2} \sum_{i=0}^{n-1} (\overline{\mathbf{A}}_{ij})^{2} z_{i}^{2} (1-z_{i})^{2} \right] \\ \mathcal{R}_{Do}^{c}(\mathbf{W}) &= \frac{\delta}{1-\delta} \sum_{h=0}^{d-1} \mathbf{W}_{h}^{2} \sum_{j=0}^{n-1} \left[\mathbf{X}_{jh}^{2} \sum_{i=0}^{n-1} z_{i}^{2} (1-z_{i})^{2} (\overline{\mathbf{A}}_{ij})^{2} \right] \end{split}$$

- With Supervised Cross-Entropy Loss:
 - Random propagation can enforce the consistency of the classification confidence between each node and its labeled multi-hop neighborhoods.
- Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020
 Code & data for Grand: <u>https://github.com/Grand20/grand</u>

-				
	Method	Cora	Citeseer	Pubmed
GCNs	GCN [19]	81.5	70.3	79.0
	GAT [32]	83.0±0.7	72.5 ± 0.7	79.0 ± 0.3
	APPNP [20]	83.8±0.3	71.6 ± 0.5	79.7 ± 0.3
	Graph U-Net [11]	84.4 ± 0.6	73.2 ± 0.5	79.6 ± 0.2
	SGC [36]	81.0 ± 0.0	71.9 ± 0.1	78.9 ± 0.0
	MixHop [1]	81.9 ± 0.4	71.4 ± 0.8	$80.8 {\pm} 0.6$
	GMNN [28]	83.7	72.9	81.8
	GraphNAS [12]	84.2±1.0	73.1±0.9	79.6±0.4
Sampling	GraphSAGE [16]	78.9±0.8	67.4±0.7	77.8±0.6
GCNs	FastGCN [7]	$81.4 {\pm} 0.5$	$68.8 {\pm} 0.9$	77.6 ± 0.5
-	VBAT [10]	83.6±0.5	74.0±0.6	79.9±0.4
Regularization	G ³ NN [24]	82.5 ± 0.2	74.4 ± 0.3	77.9 ± 0.4
GCNs	GraphMix [33]	83.9±0.6	74.5 ± 0.6	$81.0 {\pm} 0.6$
	DropEdge [29]	82.8	72.3	79.6
-	Grand	85.4±0.4	75.4±0.4	82.7±0.6



Instead of the marginal improvements by conventional GNN baselines over GCN, *GRAND* achieves much more significant performance lift in all three datasets!

- Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020
- Code & data for Grand: <u>https://github.com/Grand20/grand</u>

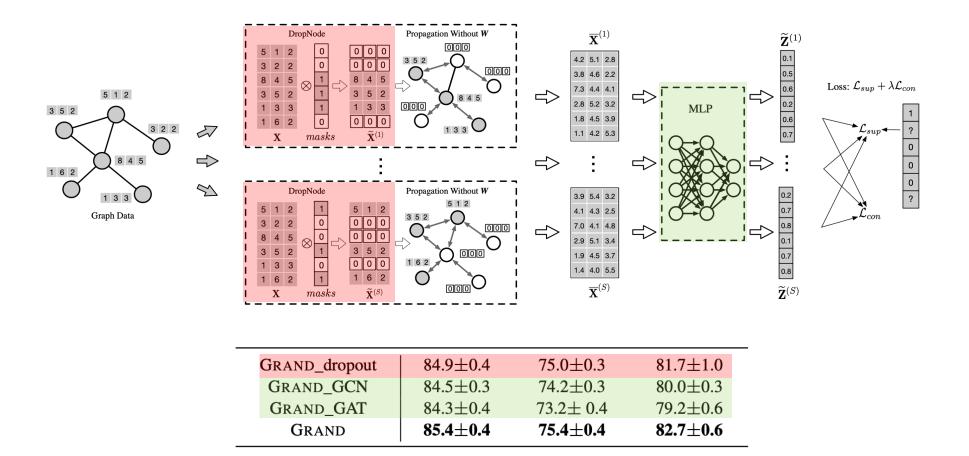
Table 5: Results on large datasets.

Method	Cora Full	Coauthor CS	Coauthor Physics	Amazon Computer	Amazon Photo	Citation CS
GCN	62.2 ± 0.6	91.1 ± 0.5	92.8 ± 1.0	82.6 ± 2.4	91.2 ± 1.2	49.9 ± 2.0
GAT	51.9 ± 1.5	90.5 ± 0.6	92.5 ± 0.9	78.0 ± 19.0	85.7 ± 20.3	49.6 ± 1.7
Grand	63.5 ±0.6	$\textbf{92.9} \pm \textbf{0.5}$	$\textbf{94.6} \pm \textbf{0.5}$	85.7 ± 1.8	$\textbf{92.5}\pm\textbf{1.7}$	$\textbf{52.8} \pm \textbf{1.2}$

More experiments on larger graph datasets

[•] Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020

Results



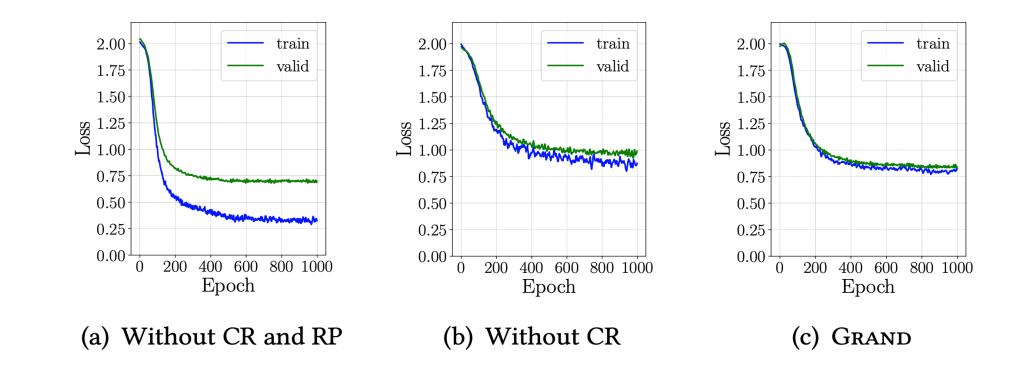
Evaluation of the design choices in GRAND

Method	Cora	Citeseer	Pubmed	
GCN [19]	81.5	70.3	79.0	
GAT [32]	83.0 ± 0.7	72.5 ± 0.7	79.0 ± 0.3	
APPNP [20]	83.8 ± 0.3	71.6 ± 0.5	79.7 ± 0.3	
Graph U-Net [11]	84.4 ± 0.6	73.2 ± 0.5	$79.6 {\pm} 0.2$	
SGC [36]	81.0 ± 0.0	71.9 ± 0.1	78.9 ± 0.0	
MixHop [1]	81.9 ± 0.4	71.4 ± 0.8	$80.8 {\pm} 0.6$	
GMNN [28]	83.7	72.9	81.8	
GraphNAS [12]	84.2 ± 1.0	73.1±0.9	79.6±0.4	
DropEdge [29]	82.8	72.3	79.6	
w/o CR	84.4±0.5	73.1±0.6	80.9±0.8	
w/o mDN	84.7±0.4	$74.8 {\pm} 0.4$	81.0 ± 1.1	
w/o sharpening	$84.6 {\pm} 0.4$	72.2 ± 0.6	$81.6 {\pm} 0.8$	
w/o CR & DN	83.2 ± 0.5	70.3 ± 0.6	78.5 ± 1.4	

Ablation Study

- 1. Each of the designed components contributes to the success of GRAND.
- 2. GRAND w/o consistency regularization outperforms almost all 8 non-regularization based GCNs & DropEdge

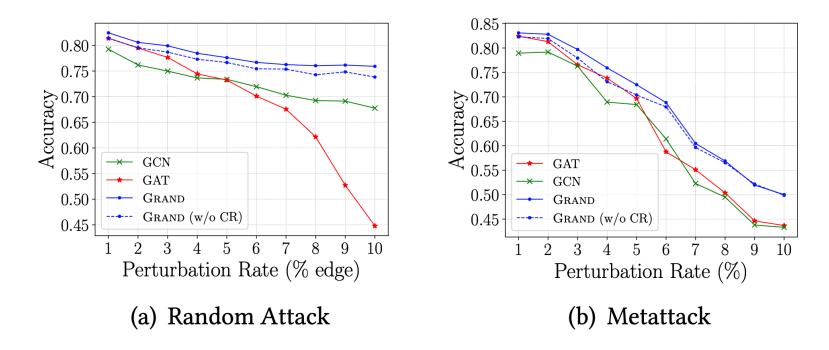
• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020



Generalization

1. Both the random propagation and consistency regularization improve GRAND's generalization capability

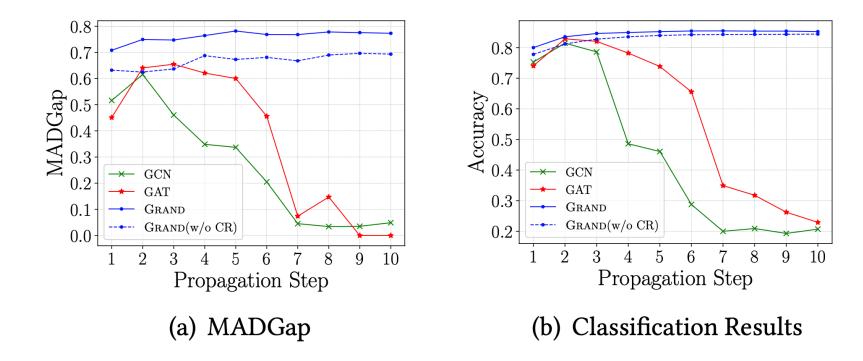
• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020



Robustness

1. GRAND (with or w/o) consistency regularization is more robust than GCN and GAT.

• Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. https://arxiv.org/abs/2005.11079, 2020



Over-Smoothing

1. GRAND is very powerful to relieve over-smoothing, when GCN & GAT are very vulnerable to it

[•] Feng et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. <u>https://arxiv.org/abs/2005.11079</u>, 2020

Thanks!