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Link prediction by #CN and structural diversity
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four common neighbors do not know each other (left),
or if they all know each other (right)?
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 for each pair of networks, we compute the
correlation  coefficient p(vi,vj) between their
common neighborhood signatures v;, v;.

The structural diversity of common neighborhoods is a crucial
factor in determining link existence across different networks.

Proper application of structural diversity has the potential to
substantially improve the predictability of link existence, with
important implications for improving recommendation
functions employed by social networking sites.

e, %

subgraph sigriificance
profile

When homophily (#CN) is fixed, the structural diversity of
common neighborhoods has a negative effect on the formation of
online friendships in Friendster but a positive effect in
Big Network Data BlogCatalog, and a relatively neutral effect on YouTube.

* For the similarity matrix, we cluster it hierarchically.
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The structural diversity of common neighborhood has
significant & distinct effects on link formation and network
organization across different networks.

80 real networks 40 random graphs by
* AMiner.org * Erd6s—Rényi model
s ASU * Barabasi—Albert model

BId) > Pall

* KONECT * Watts and Strogatz model Structural diversity, in many cases, violates the principle of The difference between uncovered superfamilies lie in the distinct strategies that
 MPI-SWS * Kronecker model homophily, suggesting the fundamental assumption held by the people use across different networking services for satisfying various needs, such
homophily principle can often be an oversimplification. the use of Friendster (‘red’ family) for satisfying social needs and BlogCatalog
(‘blue’ family) for satisfying information needs.
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. Common Neighborhood Structure can detect intrinsic, hidden network
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Common neighborhood signature can uncover unique network
superfamilies, in each of which network structures are formed
under certain needs---notably social needs (Friendster &

* Notre Dame Facebook) and information needs (BlogCatalog & LinkedIn).

* Net Repo 10 for each model with different The observations reveal a fundamental difference between these
e Newman parameter settings. three networks in their microscopic structures and link formation Together with classical network properties, we also find that CNS can be used to
mechanisms. examine the fitness of random graphs in simulating real networks.

Common neighborhood signature can serve as a new network
property for examining real networks and designing random
graph generation models.
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