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♣ Input: A heterogeneous network G = (V, E, T) in which T = {𝑇𝑉 , 𝑇𝐸} denotes the node 
and edge types. 

♣ Output: d-dimensional latent representations 𝑿 ∈ ℝ 𝑉 ×𝑑 , 𝑑 ≪ 𝑉

♣ Goal: 𝑿 is able to capture the structural and semantic relations among different types 
of nodes.

Heterogeneous Network Embedding
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Network Mining Tasks
♧ node label inference
♧ community detection
♧ similarity search 
♧ link prediction

♧ …

♣ Challenges:

♧ How do we effectively preserve the concept of “node-context” among multiple types 
of nodes, e.g., authors, papers, & venues in academic heterogeneous networks? 

♧ Can we directly apply homogeneous network embedding architectures to 
heterogeneous networks? 

♧ It is difficult for conventional meta-path based methods to model similarities between 
nodes without connected meta-paths.
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♣ Solutions:

Heterogeneous Skip-Gram
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♣ Softmax in metapath2vec ♣ Softmax in metapath2vec++

♣ Network maximization in both

♣ Objective function in metapath2vec++ (heterogeneous 
negative sampling)

♣ The heterogeneous skip-gram model used in 
metapath2vec++ when predicting for a4. Instead of one set 
of multinomial distributions for all types of neighborhood 
nodes in the output layer, it specifies one set of multinomial 
distributions for each type of nodes in a4’s neighborhood.

Meta-Path-Based Random Walks

♣ Given a heterogeneous network G = (V, E, T)  and a 
meta-path scheme

♣ The transition probability at step i is defined as

♣ In addition, meta-paths are commonly used in a 
symmetric way, that is, its first node type is the same 
with the last one [5], facilitating its recursive guidance 
for random walkers, i.e.,

We design meta-path-based random walks to generate 
paths that are able to capture both the semantic and 
structural correlations between different types of nodes, 
facilitating the transformation of heterogeneous network 
structures into metapath2vec’s skip-gram.

Example: In a traditional random walk procedure, in the
toy example, the next step of a walker on node a4

transitioned from node CMU can be all types of nodes
surrounding it—a2, a3, a5, p2, p3, and CMU. However,
under the meta-path scheme ‘OAPVPAO’, for example,
the walker is biased towards paper nodes (P) given its
previous step on an organization node CMU (O),
following the semantics of this meta-path.

Heterogeneous Network Data

♣ AMiner [6]: 9 1.7 million authors, 3 million papers, 3800+ 
venues, & 8 categories of venues for labeling venues & authors.

♧ Computer Linguistics

♧ Computer Graphics

♧ Computer Networks

♧ Computer Vision

♧ Computing Systems

♧ Databases & Info

♧ Human Computer Interaction

♧ Theoretical Computer Science

♣ DBIS [5]: 5 thousand authors, 72 thousand papers, 464 venues.

♣ meta-path: APVPA

♣ #walks per node w: 1000

♣ walk length l: 100

♣ vector dimension d: 128

♣ neighborhood size k: 7

♣ #negative-samples: 5

Experiments: Label Prediction Experiments: Clustering Experiments: Similarity Search Experiments: Visualization

Multi-class venue node classification results in AMiner data


