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Abstract

Recent advances in network embedding have rev-
olutionized the field of graph and network min-
ing. However, (pre-)training embeddings for very
large-scale networks is computationally challeng-
ing for most existing methods. In this work, we
present ProNE1—a fast, scalable, and effective
model, whose single-thread version is 10–400×
faster than efficient network embedding bench-
marks with 20 threads, including LINE, DeepWalk,
node2vec, GraRep, and HOPE. As a concrete ex-
ample, the single-thread ProNE requires only 29
hours to embed a network of hundreds of millions
of nodes while it takes LINE weeks and Deep-
Walk months by using 20 threads. To achieve
this, ProNE first initializes network embeddings ef-
ficiently by formulating the task as sparse matrix
factorization. The second step of ProNE is to en-
hance the embeddings by propagating them in the
spectrally modulated space. Extensive experiments
on networks of various scales and types demon-
strate that ProNE achieves both effectiveness and
significant efficiency superiority when compared to
the aforementioned baselines. In addition, ProNE’s
embedding enhancement step can be also general-
ized for improving other models at speed, e.g., of-
fering >10% relative gains for the used baselines.

1 Introduction
Over the past years, representation learning has offered a
new paradigm for network mining and analysis [Hamilton
et al., 2017b]. Its goal is to project a network’s structures
into a continuous space—embeddings—while preserving its
certain properties. Extensive studies have shown that the
learned embeddings can benefit a wide range of network min-
ing tasks [Perozzi et al., 2014; Hamilton et al., 2017b].

The recent advances in network embedding can roughly
fall into three categories: matrix factorization based meth-
ods such as SocDim [Tang and Liu, 2009], GraRep [Cao
et al., 2015], HOPE [Ou et al., 2016], and NetMF [Qiu

1Code is available at https://github.com/THUDM/ProNE

et al., 2018]; skip-gram based models, such as Deep-
Walk [Perozzi et al., 2014], LINE [Tang et al., 2015], and
node2vec [Grover and Leskovec, 2016]; and graph neural
networks (GNNs), such as Graph Convolution [Kipf and
Welling, 2017], GraphSage [Hamilton et al., 2017a], and
Graph Attention [Veličković et al., 2018]. Commonly, the
embeddings pre-trained by the first two types of methods are
fed into downstream tasks’ learning models, such as GNNs.

Therefore, it is critical to generate effective network em-
beddings efficiently in order to serve large-scale real network
applications. However, most of existing models focus on im-
proving the effectiveness of embeddings, leaving their effi-
ciency and scalability limited. For example, in factorization
based models, the time complexity of GraRep is O(n3) with
n being the number of nodes in a network, making it pro-
hibitively expensive to compute for large networks; In skip-
gram based models, with the default parameter settings, it
would cost LINE weeks and DeepWalk/node2vec months to
learn embeddings for a network of 100,000,000 nodes and
500,000,000 edges by using 20 threads on a modern server.

To address the efficiency and scalability limitations of cur-
rent work, we present a fast and scalable network embed-
ding algorithm—ProNE. The general idea of ProNE is to
first initialize network embeddings in an efficient manner and
then to enhance the representation power of these embed-
dings. Inspired by the long-tailed distribution of most real
networks and its resultant network sparsity, the first step is
achieved by formulating network embedding as sparse matrix
factorization; The second step is to leverage the higher-order
Cheeger’s inequality to spectrally propagate the initial em-
beddings with the goal of capturing the network’s localized
smoothing and global clustering information.

This design makes ProNE an extremely fast embedding
model with the effectiveness superiority. We conduct ex-
periments in five real networks and a set of random graphs.
Extensive demonstrations show that the one-thread ProNE
model is about 10–400× faster than popular network em-
bedding benchmarks with 20 threads, including DeepWalk,
LINE, node2vec (See Figure 1). Our scalability analysis sug-
gests that the time cost of ProNE is linearly correlated with
network volume and density, making it scalable for billion-
scale networks. In fact, by using one thread, ProNE requires
only 29 hours to learn embeddings for the aforementioned
network of 100,000,000 nodes.
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Figure 1: The efficiency comparison between ProNE and baselines.

In addition to its efficiency and scalability advantage,
ProNE also consistently outperforms all baselines across all
datasets for the multi-label node classification task. More im-
portantly, the second step—spectral propagation—in ProNE
is a general framework for enhancing network embeddings.
By taking the embeddings generated by DeepWalk, LINE,
node2vec, GraRep, and HOPE as the input, our spectral prop-
agation strategy offers on average +10% relative improve-
ments for all of them.

2 The Network Embedding Problem
We use G = (V,E) to denote an undirected network with V
as the node set of n nodes and E as the edge set. In addition,
we denote G’s adjacency matrix (binary or weighted) as A
and its diagonal degree matrix as D with Dii =

∑
j Aij .

Given a network G = (V,E), the problem of network em-
bedding aims to learn a mapping function f : V 7→ Rd that
projects each node to a d-dimensional space (d � |V |) to
capture the structural properties of the network.

Extensive studies have shown that the learned node rep-
resentations can benefit various graph mining tasks. , such
as node classification and link prediction. However, one ma-
jor challenge is that it is computationally infeasible for most
network embedding models to handle large-scale networks.
For example, it takes the popular DeepWalk model months to
learn embeddings for a sparse random graph of 100,000,000
nodes by using 20 threads [Mikolov et al., 2013a].

3 ProNE: Fast Network Embedding
In this section, we present ProNE—a very fast and scalable
model for large-scale network embedding (NE). ProNE com-
poses of two steps as illustrated in Figure 2. First, it for-
mulates network embedding as sparse matrix factorization to
efficiently achieve initial node representations. Second, it uti-
lizes the higher-order Cheeger’s inequality to modulate the
network’s spectral space and propagate the learned embed-
dings in the modulated network, which incorporates both the
localized smoothing and global clustering information.

3.1 Fast NE as Sparse Matrix Factorization
The distributional hypothesis [Harris, 1954] has inspired the
recent emergence of word and network embedding. Here we
show how distributional similarity-based network embedding

Input:	𝐺 = (𝑉, 𝐸) Output:	𝑅*

ProNE

Fast Embedding Initialization 
via Sparse Matrix Factorization

Enhance Embedding via 
Spectral Propagation

Figure 2: The ProNE model: 1) Sparse matrix factorization for fast
embedding initialization and 2) Spectral propagation in the modu-
lated networks for embedding enhancement.

can be formulated as matrix factorization and more impor-
tantly, how it can enable efficient network embedding.

Network Embedding as Sparse Matrix Factorization
Node similarities are usually modeled by structural contexts.
We propose to leverage the simplest structure—edge—to rep-
resent a node-context pair. The edge set then forms a node-
context pair set D = E. Formally, we define the occurrence
probability of context vj given node vi as

p̂i,j = σ(rTi cj) (1)

where σ(.) is the sigmoid function and ri, ci ∈ Rd represent
the embedding and context vectors of node vi, respectively.
Accordingly, the objective can be expressed as the weighted
sum of log loss over all edges l = −

∑
(i,j)∈D pi,j ln p̂i,j ,

where pij = Aij/Dii indicates the weight of (vi, vj) in D.
To avoid the trivial solution (ri=cj & p̂i,j=1), for each ob-

served pair (vi, vj), the appearance of a context vj is also
accompanied by negative samples PD,j , updating the loss as:

l = −
∑

(i,j)∈D

[pi,j lnσ(rTi cj) + τPD,j lnσ(−rTi cj)] (2)

where τ is the negative sample ratio and PD,j—the negative
samples associated with context node vj—can be defined as
PD,j ∝ (

∑
i:(i,j)∈D pi,j)

α with α = 1 or 0.75 [Mikolov et
al., 2013b]. A sufficient condition for minimizing the objec-
tive in Eq. 2 is to let its partial derivative with respect to rTi cj
be zero. Hence,

rTi cj = ln pi,j − ln(τPD,j), (vi, vj) ∈ D (3)

In observation of rTi cj representing the similarity between
vi’s embedding and vj’s context embedding, we propose to
define a proximity matrix M with each entry as rTi cj , i.e.,

Mi,j =

{
ln pi,j − ln(τPD,j) , (vi, vj) ∈ D
0 , (vi, vj) /∈ D

(4)

Naturally, the objective of distributional similarity-based
network embedding is transformed to matrix factorization.
We use a spectral method—truncated Singular Value Decom-
position (tSVD), i.e.,M≈UdΣdV Td , where Σd is the diagonal
matrix formed from the top-d singular values, and Ud and Vd
are n×d orthonormal matrices corresponding to the selected
singular values. Finally, Rd ← UdΣ

1/2
d is the embedding

matrix with each row representing one node’s embedding.
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Sparse Randomized tSVD for Fast Embedding
By far, we show how general distributional similarity-based
network embedding can be understood as matrix factoriza-
tion. However, tSVD for large-scale matrices (networks) is
still time and space expensive. To achieve fast network em-
bedding, we propose to use the randomized tSVD, which of-
fers a significant speedup over tSVD with a strong approxi-
mation guarantee [Halko et al., 2011].

Here we show the basic idea of randomized tSVD. First, we
seek to findQwith d orthonormal columns, i.e.,M≈QQTM .
Assuming such Q has been found, we define H=QTM ,
which is a small matrix (d×|V |) and can be decomposed effi-
ciently by the standard SVD. Thus we can have H=SdΣdV Td
for Sd, Vd orthogonal and Σd diagonal. Finally M can be
decomposed as M ≈ QQTM = (QSd)ΣdV

T
d and the final

output embedding matrix of this step is

Rd = QSdΣ
1/2
d (5)

The random matrix theory empowers us to find Q effi-
ciently. The first step is to generate a |V | × d Gaussian ran-
dom matrix Ω where Ωij ∼ N (0, 1

d ). Given this, we can get
Y =MΩ and take the QR decomposition , i.e., Y =QR, where
Q is a |V | × d matrix whose columns are orthonormal.

Note that inspired by [Levy and Goldberg, 2014], a recent
study shows that skip-gram based network embedding mod-
els can be viewed as implicit matrix factorization [Qiu et al.,
2018]. However, the matrix to be implicitly factorized is a
dense one, resulting in theO(|V |3) time complexity for its as-
sociated matrix factorization model, while our case involves
sparse matrix factorization in O(|E|) (Cf. Eq. 4).

3.2 NE Enhancement via Spectral Propagation
Similar to DeepWalk and LINE, the embeddings learned
above can only capture local structural information. To fur-
ther incorporate global network properties, i.e., community
structures, we propose to propagate the initial embeddings in
the spectrally modulated network.

Formally, given the input/initial embeddings Rd, we con-
duct the following propagation rule:

Rd ← D−1A(In − L̃)Rd (6)

where In is the identity matrix, L̃ is the Laplacian filter, and
all together, D−1A(In − L̃) is the modulated network of the
input G. This is inspired by the higher-order Cheeger’s in-
equality [Lee et al., 2014; Bandeira et al., 2013], which will
be shown below. Note that the propagation strategy is general
and can be also used to enhance existing embedding models,
such as DeepWalk, LINE, etc. (Cf. Figure 4).

Bridge NE, Graph Spectrum, and Graph Partition
Higher-order Cheeger’s inequality suggests that eigenvalues
in graph spectral are closely associated with a network’ spa-
tial locality smoothing and global clustering. First, in graph
spectral theory, the random walk normalized graph Laplacian
is defined as L=In−D−1A. The normalized Laplacian can
be decomposed as L=UΛU−1, where Λ=diag([λ1, ..., λn])
with 0=λ1 ≤ · · · ≤ λn as its eigenvalues and U is the n×n
square matrix whose ith column is the eigenvector ui. The

graph Fourier transform of a signal x is defined as x̂ = U−1x
while the inverse transform is x = Ux̂. Then a network prop-
agation D−1Ax can be interpreted that x is first transformed
into the spectral space and scaled by the eigenvalues, and then
transformed back.

Second, the graph partition effect can be measured by
the Cheeger constant (a.k.a., graph conductance). For a
partition S ⊆ V , the constant is defined as φ(S) =

|E(S)|
min{vol(S),vol(V−S)} where E(S) is the set of edges with
one endpoint in S and vol(S) is the sum of nodes’ degree
in node set S. The k-way Cheeger constant is defined as
ρG(k) = min{max{φ(Si) : S1, S2, ..., Sk ⊆ V disjoint}}
which reflects the effect of the graph partitioned into k parts.
A smaller value means a better partitioning effect.

Higher-order Cheeger’s inequality bridges the gap between
graph spectrum and graph partition via controlling the bounds
of k-way Cheeger constant as follows:

λk
2
≤ ρG(k) ≤ O(k2)

√
λk (7)

In spectral graph theory, the number of connected compo-
nents in an undirected graph is equal to the multiplicity of
the eigenvalue zero in graph Laplacian [Von Luxburg, 2007],
which can be concluded from ρG(k)=0 when setting λk=0.

Eq. 7 indicates that small (large) eigenvalues control the
network’s global clustering (local smoothing) effect by par-
titioning it into a few large (many small) parts. This in-
spires us to incorporate the global and local network informa-
tion into network embeddings by propagating the embeddings
Rd in the partitioned/modulated network D−1A(In − L̃),
where the Laplacian filter L̃ = Ug(Λ)U−1 with g as the
spectral modulator. To take both global and local struc-
tures into consideration, we design the spectral modulator as
g(λ) = e−

1
2 [(λ−µ)2−1]θ . Therefore, we have the Laplacian

filter

L̃ = Udiag([g(λ1), ..., g(λn)])UT (8)

g(λ) can be considered as a band-pass filter kernel [Shu-
man et al., 2016; Hammond et al., 2011] that passes eigen-
values within a certain range and attenuates eigenvalues out-
side that range. Hence ρG(k) is attenuated for corresponding
top largest and smallest eigenvalues, leading to the amplified
local and global network information, respectively. Note that
the band-pass filter is a general spectral network modulator
and the other kinds of filters can also be used.

Chebyshev Expansion for Efficiency
To avoid the explicit eigendecomposition and Fourier trans-
formation in Eq. 8, we utilize the truncated Chebyshev ex-
pansion. The Chebyshev polynomials of the first kind are
defined recurrently as Ti+1(x) = 2xTi(x) − Ti−1(x) with
T0(x) = 1, T1(x) = x. Then

L̃ ≈ U
k−1∑
i=0

ci(θ)Ti(Λ̄)U−1 =
k−1∑
i=0

ci(θ)Ti(L̄) (9)

where Λ̄ = − 1
2 [(Λ−µIn)2−In], L̄ = − 1

2 [(L−µIn)2−In].
λ̄ = 1

2 [(λ− µ)2 − 1], and the new kernel is f(λ̄) = e−λ̄θ.
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As Ti is orthogonal with the weight 1/
√

1− x2 on the
interval [−1, 1], the coefficient of Chebyshev expansion for
e−xθ can be obtained by:

ci(θ) =
β

π

∫ 1

−1

Ti(x)e−xθ√
1− x2

dx = β(−)iBi(θ) (10)

where β=1 if i=0 otherwsie β=2 and Bi(θ) is the modi-
fied Bessel function of the first kind [Andrews and Andrews,
1992]. Then the series expansion of the Laplacian filter:

L̃ ≈ B0(θ)T0(L̄) + 2
k−1∑
i=1

(−)iBi(θ)Ti(L̄) (11)

Truncated Chebyshev expansion provides an approxima-
tion for e−xθ with a very fast convergence rate. By combin-
ing Eqs. 11 and 6, the embeddings Rd can be enhanced by
the propagation in the spectrally modulated network in a very
efficient manner. In addition, to maintain the orthogonality of
the original embedding space achieved by the sparse tSVD,
finally we apply SVD on Rd again.

3.3 Complexity Analysis
The time complexity of SVD of H and QR decomposition of
Y is O(|V |d2). Since |D| � |V | × |V |, M is a sparse matrix
and the time complexity of the multiplication involved in the
process above is O(|E|). Therefore, the overall complexity
for the first step is O(|V |d2 + |E|), which is very efficient.

The computation of Eqs. 6 and 11 can be efficiently exe-
cuted in a recurrent manner. Denote R̄(i)

d = Ti(L̄)Rd, then
R̄

(i)
d = 2L̄R̄

(i−1)
d −R̄(i−2)

d with R̄(0)
d = Rd and R̄(1)

d = L̄Rd.
Note that L̄ = − 1

2 [(L−µIn)2−In] and L is sparse. SVD on
a small matrix isO(|V |d2). Therefore, the overall complexity
for the second step is O(k|E|+ |V |d2).

All together, the time complexity of ProNE is O(|V |d2 +
k|E|). Due to space constraint, we cannot include details
about its space complexity, which is O(|V |d+ |E|).

3.4 Parallelizability
The computing time of ProNE is mainly spent in the sparse
matrix multiplication, which is efficient enough for han-
dling very large-scale graphs on a single thread. Never-
theless, there have been many progresses on sparse ma-
trix multiplication parallelizability [Buluç and Gilbert, 2012;
Smith et al., 2015], which can offer a further speedup for our
current implementation.

4 Experiments
We evaluate the efficiency and effectiveness of the ProNE
method on multi-label node classification—a commonly used
task for network embedding evaluation [Perozzi et al., 2014;
Tang et al., 2015; Grover and Leskovec, 2016].

4.1 Experimental Setup
Datasets. We employ five widely-used datasets for demon-
strating the effectiveness of ProNE. The dataset statistics are
listed in Table 1. In addition, we also use a set of synthetic
networks for evaluating its efficiency and scalability.

Dataset BlogCatalog Wiki PPI DBLP Youtube
#nodes 10,312 4,777 3,890 51,264 1,138,499
#edges 333,983 184,812 76,584 127,968 2,990,443
#labels 39 40 50 60 47

Table 1: The statistics of datasets.

• BlogCatalog [Zafarani and Liu, 2009] is a social blogger
network, in which Bloggers’ interests are used as labels.

• Wiki2 is a co-occurrence network of words in the first mil-
lion bytes of the Wikipedia dump. Node labels are the Part-
of-Speech tags.

• PPI [Breitkreutz et al., 2008] is a subgraph of the PPI net-
work for Homo Sapiens. Node labels are extracted from
hallmark gene sets and represent biological states.

• DBLP [Tang et al., 2008] is an academic citation network
where authors are treated as nodes and their dominant con-
ferences as labels.

• Youtube [Zafarani and Liu, 2009] is a social network be-
tween Youtube users. The labels represent groups of view-
ers that enjoy common video genres.

Baselines. We compare ProNE with popular benchmarks,
including both skip-gram (DeepWalk, LINE, and node2vec)
and matrix factorization (GraRep and HOPE) based meth-
ods. For a fair comparison, we set the embedding dimension
d = 128 for all methods. For the other parameters, we follow
the original authors’ preferred choices. For DeepWalk and
node2vec, windows size m=10, #walks per node r=80, walk
length t=40. p, q in node2vec are searched over {0.25, 0.50,
1, 2, 4}. For LINE, #negative-samples k = 5 and total sam-
pling budget T=r×t×|V |. For GraRep, the dimension of the
concatenated embedding is d=128 for fairness. For HOPE,
β is calculated in authors’ code and searched over (0, 1) for
the best performance. For ProNE, the term number of the
Chebyshev expansion k is set to 10, µ=0.2, and θ=0.5, which
are the default settings. Note that convolution-based meth-
ods are excluded, as most of them are in (semi-)supervised
learning settings and require side information features (such
as embeddings) for training.

Running Environment. The experiments were conducted
on a Red Hat server with Intel Xeon(R) CPU E5-4650
(2.70GHz) and 1T RAM. ProNE is implemented by Python
3.6.1.

Evaluation. We follow the same experimental settings used
in baseline works [Perozzi et al., 2014; Grover and Leskovec,
2016; Tang et al., 2015; Cao et al., 2015]. We randomly sam-
ple different percentages of labeled nodes for training a lib-
linear classifier and use the remaining for testing. We repeat
the training and predicting for ten times and report the aver-
age Micro-F1 for all methods. Analogous results also hold for
Macro-F1, which thus are not shown due to space constraints.
We follow the common practice for efficiency evaluation by
the wall-clock time and ProNE’s scalability is analyzed by the
time cost in multiple-scale networks [Tang et al., 2015].

2http://www.mattmahoney.net/dc/text.html

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4281



103 104 105 106 107 108

# node

101

102

103

104

105

tiP
e (

in 
se

Fo
nd

s)

1
6

142

1374

11199

106682

1
4

97

960

8062

48522

3ro1( (60))
3ro1(

(a) The node degree is fixed to 10 and #nodes grows

200 400 600 800 1000
degree

0

10

20

30

40

tim
e (

in 
sec

on
ds)

11
15

19
23

26
32 34

41
45 46

7 9 11 12 13
17 16

21 23 22

ProNE (SMF)
ProNE

(b) #nodes is fixed to 10, 000 and the node degree grows

Figure 3: ProNE’s scalability w.r.t. network volume and density. Blue: running time of ProNE’s first step—sparse matrix factorization (SMF).
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Figure 4: Spectral Propagation for enhancing baselines—ProDeepWalk, ProLINE, ProNode2vec, ProGrarep, and ProHOPE on Wiki.

Dataset DeepWalk LINE node2vec ProNE
PPI 272 70 828 3
Wiki 494 87 939 6

BlogCatalog 1,231 185 3,533 21
DBLP 3,825 1,204 4,749 24

Youtube 68,272 5,890 >5days 627

Table 2: Efficiency comparison based on running time (second).

4.2 Efficiency and Scalability
We compare the efficiency of different methods. The
efficiency of all baselines is accelerated by using 20
threads/processes, while ProNE uses one single thread (Note
that though in one minor step the number of threads used in
the SciPy package is not controlled by users, its effect on ef-
ficiency is limited and all conclusions hold).

Table 2 reports the running time (both IO and computation
time) of ProNE and the three fastest baselines—DeepWalk,
LINE, and node2vec. The spectral matrix factorization base-
lines are much slower than them. For example, the time com-
plexity of GraRep is O(|V |3), making it infeasible for rela-
tively big networks, such as Youtube of 1.1 million nodes.

The running time results suggest that for PPI and Wiki—
small networks (1,000+ nodes), ProNE requires less than 10
seconds to complete while the fastest baseline LINE is at least
14× slower and DeepWalk/node2vec is about 100× slower.
Similar speedups can be consistently observed from BlogCat-
alog and DBLP—moderate-size networks (10,000+ nodes)—
and YouTube—a relatively big network (1,000,000+ nodes).
Remarkably, ProNE can embed the YouTube network within
11 minutes by using one thread while by using 20 threads
LINE costs 100 minutes, DeepWalk requires 19 hours, and
node2vec takes more than fives days. To sum up, the one-
thread ProNE model is about 10–400× faster than the 20-

thread LINE, DeepWalk, and node2vec models, and its ef-
ficiency advantage over other spectral matrix factorization
methods is even more significant.

We use synthetic networks to demonstrate the scalability of
ProNE and its potential for handling billion-scale networks
in Figure 3. First, we generate random regular graphs with
fixed node degree as 10 and the number of nodes ranging be-
tween 1,000 and 100,000,000. Figure 3(a) shows ProNE’s
running time for random graphs of different sizes, suggest-
ing that the time cost of ProNE increases linearly as the net-
work size grows. In addition, the running time for the five
real datasets is also inserted into the plot, which is in line
with the scalability trend on synthetic data. Therefore, we
can project that it costs ProNE only ∼29 hours to embed a
network of 0.1 billion nodes and 0.5 billion edges by using
one thread, while it takes LINE over one week and may take
DeepWalk/node2vec several months by using 20 threads.

Second, Figure 3(b) shows the running time of ProNE for
random regular networks of a fixed size (10,000 nodes) and
varied degree between 100 and 1,000. It can be clearly ob-
served that the efficiency of ProNE is linearly correlated with
network density. All together, we conclude that ProNE is
a scalable network embedding approach for handling large-
scale and even dense networks.

4.3 Effectiveness
We summarize the prediction performance in Table 3. Due to
space limitation, we only report the results in terms of Micro-
F1 and the standard deviation (σ) of the proposed model’s
results. Our conclusions below also hold for Macro-F1. In
addition to ProNE, we also report the interim embedding re-
sults generated by the sparse matrix factorization (SMF) step
in ProNE. For Youtube, we only use the two fastest and rep-
resentative baselines, LINE and Deepwalk, to save time.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4282



Dataset training ratio 0.1 0.3 0.5 0.7 0.9

PP
I

DeepWalk 16.4 19.4 21.1 22.3 22.7
LINE 16.3 20.1 21.5 22.7 23.1

node2vec 16.2 19.7 21.6 23.1 24.1

GraRep 15.4 18.9 20.2 20.4 20.9
HOPE 16.4 19.8 21.0 21.7 22.5

ProNE (SMF) 15.8 20.6 22.7 23.7 24.2
ProNE 18.2 22.7 24.6 25.4 25.9
(±σ) (±0.5) (±0.3) (±0.7) (±1.0) (±1.1)

W
ik

i

DeepWalk 40.4 45.9 48.5 49.1 49.4
LINE 47.8 50.4 51.2 51.6 52.4

node2vec 45.6 47.0 48.2 49.6 50.0

GraRep 47.2 49.7 50.6 50.9 51.8
HOPE 38.5 39.8 40.1 40.1 40.1

ProNE (SMF) 47.6 51.6 53.2 53.5 53.9
ProNE 47.3 53.1 54.7 55.2 57.2
(±σ) (±0.7) (±0.4) (±0.8) (±0.8) (±1.3)

B
lo

gC
at

al
og

DeepWalk 36.2 39.6 40.9 41.4 42.2
LINE 28.2 30.6 33.2 35.5 36.8

node2vec 36.3 39.7 41.1 42.0 42.1

GraRep 34.0 32.5 33.3 33.7 34.1
HOPE 30.7 33.4 34.3 35.0 35.3

ProNE (SMF) 34.6 37.6 38.6 39.3 39.0
ProNE 36.2 40.0 41.2 42.1 42.7
(±σ) (±0.5) (±0.3) (±0.6) (±0.7) (±1.2)

Dataset training ratio 0.01 0.03 0.05 0.07 0.09

D
B

L
P

DeepWalk 49.3 55.0 57.1 57.9 58.4
LINE 48.7 52.6 53.5 54.1 54.5

node2vec 48.9 55.1 57.0 58.0 58.4

GraRep 50.5 52.6 53.2 53.5 53.8
HOPE 52.2 55.0 55.9 56.3 56.6

ProNE (SMF) 50.8 54.9 56.1 56.7 57.0
ProNE 48.8 56.2 58.0 58.8 59.2
(±σ) (±1.0) (±0.5) (±0.2) (±0.2) (±0.1)

Y
ou

tu
be

DeepWalk 38.0 40.1 41.3 42.1 42.8
LINE 33.2 35.5 37.0 38.2 39.3

ProNE (SMF) 36.5 40.2 41.2 41.7 42.1
ProNE 38.2 41.4 42.3 42.9 43.3
(±σ) (±0.8) (±0.3) (±0.2) (±0.2) (±0.2)

Table 3: The classification performance in terms of Micro-F1 (%).

We observe that ProNE consistently generates better re-
sults than baselines across five datasets, demonstrating its
strong effectiveness. Interestingly, it turns out that the sim-
ple sparse matrix factorization (SMF) step for fast embedding
initialization in ProNE is comparable to or sometimes even
better than existing popular network embedding benchmarks.
With the spectral propagation technique further incorporated,
ProNE generates the best performance among all baselines
due to its effective modeling of local structure smoothing and
global clustering information.

Spectral Propagation for Embedding Enhancement
Recall that ProNE composes of two steps: 1) sparse matrix
factorization for fast embedding initialization and 2) spectral
propagation for enhancement. Can spectral propagation also
help improve the baseline methods?

We input the embeddings learned by DeepWalk, LINE,
node2vec, GraRep, and HOPE into ProNE’s spectral prop-
agation step. Figure 4 shows both the original and enhanced
results (denoted as “ProBaseline’) on Wiki, illustrating sig-
nificant improvements achieved by the Pro versions for all
five baselines. On average, our spectral propagation strategy
offers +10% relative gains for all methods, such as the 25%
improvements for HOPE. Moreover, all enhancement experi-
ments are completed in one second. The results demonstrate
that the spectral propagation in ProNE is effective and a gen-
eral and fast strategy for improving network embeddings.

5 Related Work
The recent emergence of network embedding is largely trig-
gered by representation learning natural language process-
ing [Mikolov et al., 2013b]. Its history can date back to
spectral clustering [Chung, 1997] and social dimension learn-
ing [Tang and Liu, 2009]. Over the course of its develop-
ment, most network embedding methods aim to model distri-
butional similarities of nodes either implicitly or explicitly.

Inspired by the word2vec model, a line of skip-gram based
embedding models have been presented to encode network
structures into continuous spaces, such as DeepWalk [Perozzi
et al., 2014], LINE [Tang et al., 2015], node2vec [Grover
and Leskovec, 2016], and metapath2vec [Dong et al., 2017].
Recently, learned from [Levy and Goldberg, 2014], a study
shows that skip-gram based network embedding can be un-
derstood as implicit matrix factorization and it also presents
the NetMF model to perform explicit matrix factorization for
learning network embeddings [Qiu et al., 2018]. The differ-
ence between NetMF and our model lies in that the matrix
to be factorized by NetMF is a dense one, whose construc-
tion and factorization involve computation in O(|V |3) time
complexity, while our ProNE model formalizes network em-
bedding as sparse matrix factorization in O(|E|).

The other recent matrix factorization based network em-
bedding models include GraRep [Cao et al., 2015] and
HOPE [Ou et al., 2016]. Spectral network embedding is re-
lated to spectral dimension reduction methods, such as Lapla-
cian Eigenmaps [Belkin and Niyogi, 2001] and spectral clus-
tering [Yan et al., 2009]. These matrix decomposition based
methods usually require expensive computation and exces-
sive memory consumption due to their high time and space
complexity.

Another significant line of work focuses on generalizing
graph spectral into (semi-)supervised graph learning, such
as graph convolution networks (GCNs) [Henaff et al., 2015;
Defferrard et al., 2016; Kipf and Welling, 2017]. In GCNs,
the convolution operation is defined in the spectral space and
parametric filters are learned via back-propagation. Different
from them, our ProNE model features a band-pass filter incor-
porating both spatial locality smoothing and global clustering
properties. Furthermore, ProNE is an unsupervised and task-
independent model that aims to pre-train general embeddings,
while most GCNs are (semi-)supervised with side features as
input, such as the network embeddings learned by ProNE.

6 Conclusions
In this work, we propose ProNE—a fast and scalable network
embedding approach. It achieves both efficiency and effec-
tiveness superiority over recent powerful network embedding
benchmarks, such as DeepWalk, LINE, node2vec, GraRep,
and HOPE. Remarkably, the single-thread ProNE model is
∼10–400× faster than the aforementioned baselines that are
accelerated by using 20 threads. For future work, we would
like to apply the sparse matrix multiplication parallelizability
technique to speed up ProNE as discussed in Section 3.4. In
addition, we are also interested in exploring the connection
between graph spectral based factorization models and graph
convolution and graph attention networks.
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