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Abstract—Collaboration is an integral element of the scien-
tific process that often leads to findings with significant impact.
While extensive efforts have been devoted to quantifying and
predicting research impact, the question of how collaborative
behavior influences scientific impact remains unaddressed. In
this work, we study the interplay between scientists’ collabora-
tion signatures and their scientific impact. As the basis of our
study, we employ an ArnetMiner dataset with more than 1.7
million authors and 2 million papers spanning over 60 years.
We formally define a scientist’s collaboration signature as the
distribution of collaboration strengths with each collaborator
in his or her academic ego network, which is quantified by
four measures: sociability, dependence, diversity, and self-
collaboration. We then demonstrate that the collaboration sig-
nature allows us to effectively distinguish between researchers
with dissimilar levels of scientific impact. We also discover
that, even from the early stages of one’s researcher career, a
scientist’s collaboration signature can help to reveal his or her
future scientific impact. Finally, we find that as a representative
group of outstanding computer scientists, Turing Award win-
ners collectively produce distinctive collaboration signatures
throughout the entirety of their careers. Our conclusions on
the relationship between collaboration signatures and scientific
impact give rise to important implications for researchers who
wish to expand their scientific impact and more effectively
stand on the shoulders of “collaborators.”

Keywords-Collaboration Signature; Scientific Impact; Aca-
demic Social Network; Science of Science; Scientific Success.

I. INTRODUCTION

Since its inception, science has benefited from the synergy
of collaboration. As it has matured, science has become
increasingly interdisciplinary, with researchers constantly
forging new collaborations to solve ever larger, and ever
more complex problems [1]. The effects of collaboration on
the scientific endeavor can be studied via the “science of
science,” an emerging discipline wherein scientists use sci-
ence to study the scientific process, employing quantitative
assessment to arrive at a better understanding of its dynamics
and, ultimately, to improve the outcomes it effects [2],
[3], [4], [5], [6]. But it can be difficult to quantitatively
discern the degree to which collaboration influences the
impact of a researcher’s work. Further complications arise
due to the difficulty of formulating an objective measure of a
researcher’s long-term scientific impact, which requires the
evaluation of his or her entire body of work.

One measure of scientific productivity and impact that has
received significant attention is the h-index. Proposed by J.
E. Hirsch in 2005, a researcher’s h-index is defined as h
if h of his or her papers receive at least h citations and
the number of citations of the remaining papers is at most h
each [7]. Aside from the h-index, there are other factors that
may, if properly quantified, be used to measure a researchers’
impact. For example, a scientist may be recognized for
having authored a particularly influential publication, or
what might be colloquially termed a “big-hit” paper. Or,
as scientists are inclined to publish scientific results in
prestigious venues (e.g., Nature, Science, KDD, and ICDM)
to effectively disseminate their findings, a researcher might
be recognized as a frequent contributor to such “top” venues.

A significant amount of work has been devoted to using
quantifiable measures of scientific impact, such as citation
counts and h-indices, to predict the future impact of publica-
tions and researchers [2], [5], [8], [9], [10]. These prediction
strategies, however, are fundamentally limited by the heavy-
tailed distributions of these measures, whereby the majority
of publications collect few citations and the low-h-index
researchers dominate the total number of scientific practi-
tioners [11]. To circumvent these limitations, which arise
when citation counts and h-indices are estimated directly,
Dong et al. have investigated scientific impact by addressing
the question of whether a publication will contribute to its
authors’ h-indices within a given timeframe [12].

Despite these and other extensive investigations, knowl-
edge concerning the interplay between collaboration behav-
iors and scientific impact is sorely lacking. Yet, it has been
observed that social interactions play an essential role in
human society at the levels of both collective phenomena
and individual behaviors, with recent work having found that
the concept of an “ego” social network can be used to distin-
guish individuals in human communication networks [13].
A particular type of ego network, known as a collaboration
ego network, can be used to capture collaboration patterns.
In this work, we study how researchers’ collaboration ego
networks influence the nature and progression of their sci-
entific impact throughout their research careers.

Contributions. Our study is performed on an academic
dataset comprised of over 1.7 million authors and 2 million
papers spanning more than 60 years from the premier online
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Figure 1. Collaborations in computer science. (a) x-axis: h-indices in
data; y-axis: predicted h-indices from collaboration signatures. (b) x-axis:
year; y-axis: the number of authors per publication. The average number
of collaborators per published work doubled between 1970 and 2010.

academic service ArnetMiner [14]. We formally define a
researcher’s collaboration signature as the distribution of
the fraction of collaboration strengths with each of his or
her collaborators in the collaboration ego network. We then
associate the researcher’s collaboration signature with four
quantified measures—sociability, dependence, diversity, and
self-collaboration—that demonstrate how the collaboration
signature reveals scientific impact. We demonstrate that
researchers with different levels of scientific impact produce
significantly different collaboration signatures, irrespective
of the way that scientific impact is quantified (e.g., h-index,
big-hit papers, or top-venue publications). Additionally, we
find that recipients of the Turing Award, an accolade for
outstanding contributions to the field of computer science,
collectively produce unique collaboration signatures that
are characterized by a relatively low and stable level of
sociability and a relatively high level of self-collaboration,
with both trends persisting the entirety of their careers.

To further explore the extent to which scientific impact
can be revealed by collaboration signatures, we employ
prediction-based case studies. Given only four features
present in the collaboration signature, we find surprisingly
strong performance for predicting future scientific impact
(see Figure 1(a)). Our case studies further find that the
collaboration signature of a scientist’s first fifteen years of
research is highly correlated with influence after thirty years
(Pearson correlation coefficient = 0.75).

To the best of our knowledge, this work is the first to study
collaboration behavior across a researcher’s academic career.
It is also the first to find the collaboration signature, which
describes how a scientist distributes his or her collaboration
efforts and investment, can serve as a powerful indicator of
the evolution of a researcher’s scientific impact. For this
reason, we conclude that the collaboration signature has
important implications for our understanding of the mech-
anisms that underlie the progression of scientific impact.
This finding is particularly relevant to the field of modern
computer science, wherein collaborations have in recent
decades become increasing prevalent (see Figure 1(b)).
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Figure 2. Characteristics of academic data. (a) The number of papers
at each year (y-axis is log scale). (b) The number of authors at each year
(y-axis is log scale). (c) The average #papers by each author and #authors
for each paper.

II. DATA

The data used in this work is sourced from Arnet-
Miner [14], [15], which is the premier free online service
for academic social network analysis and mining. This
academic dataset consists of 1,712,433 computer scientists
and 2,092,356 papers from computer science venues held
between 1950 and 20121. In total, we extracted 4,258,615
collaboration relationships from this dataset. The size and
quality of this dataset enable us to systematically investi-
gate the interplay of scientists’ collaboration behaviors and
scientific impact. Below, we briefly explore and characterize
this academic collaboration social network data.

First, we examine the evolution of the computer science
community. Figures 2(a) and 2(b) show the yearly number of
computer science publications and authors between 1950 and
2010. We observe an exponential development in the number
of computer science publications and researchers during this
period. Figure 2(b) also provides the number of authors
whose first published paper was in the corresponding year.
Figure 2(c) shows the average number of papers that each
author publishes and the average number of authors for each
scientific publication. We observe that, between 1950 and
2010, average publication output remained roughly constant
(blue circle), while collaboration gradually but substantially
expanded (red square).

III. COLLABORATION SIGNATURES

We suspect an interplay between a researcher’s collabora-
tion network and his or her scientific impact. Accordingly,
from each researcher’s academic publication records, we
extract an ego collaboration network, which we then use
to define a unique, personalized collaboration signature.

Conceptually, the ego network of an individual in a social
network is defined as the set of ties that this individual (i.e.,
ego) has to his or her friends [16]. The concept of an ego
network has attracted significant attention, largely due to the
important role they play in benefiting individuals. Recently,
it has even been argued that a sufficient understanding of
ego networks can reveal previously undiscovered mecha-
nisms that underlie network dynamics [13]. Yet despite an

1The dataset is publicly available at https://aminer.org/AMinerNetwork.

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

481



u

u

c

b g
f

e
d

a

Figure 3. A collaboration signature. u’s collaboration ego network
consists of the ego u and u’s collaboration relationships, including the
self-collaboration with u. Collaborations are indicated by lines, with collab-
oration strength denoted by line thickness. u’s collaboration signature is the
distribution of the fraction of collaboration weight with each collaborator.

expanding literature on ego networks [17], [13], there is a
dearth of published work that investigates the self-tie (the
tie between the individual and her- or himself). This is
particularly unfortunate, as self-ties, arguably unlike online
social networks, are non-neglectable components in the
academic collaboration network when studying single-author
publication. Here we consider a single-author publication as
a self-collaboration and define a collaboration ego network
as below:

Definition Collaboration Ego Network. The collabora-
tion ego network of a researcher u consists of u as the focal
ego and represents all of u’s collaboration relationships,
including self-collaboration.

Figure 3 shows an illustrative example of a collaboration
ego network for researcher u, where a, · · · , g and u are
located around u in the ego network. We further define tie
weight in collaboration social networks. In the context of
social network analysis, tie weight is usually referred to
as the emotional closeness and social investment between
two people [13]. More precisely, the tie weight between two
researchers u and v in a collaboration network is defined as
wuv =

∑
p∈P

1
np−1 , where P is the set of publications that

u and v coauthored and np is the number of authors of each
publication p ∈ P [18], [19], [20]. However this definition is
not applicable to the single-author situation, where np = 1.
To situate tie weight in our definition of the collaboration
ego network, we redefine tie weight as wuv =

∑
p∈P

1
np

.
By this definition, wuv = wvu.

We focus on the way that a researcher divides collab-
oration effort among collaborators and how these patterns
observed in the collaboration ego network have an effect on
his or her scientific impact. In particular, we define a “col-
laboration signature” to capture the collaboration patterns
encoded in a collaboration ego network.

Definition Collaboration Signature. Given a researcher
u, the researcher’s collaboration ego network, and the associ-
ated tie weight of each collaboration relationship, we define
researcher u’s collaboration signature as the distribution
of the fraction of collaboration weight with each of u’s
collaborators.

We refer to the fraction of collaboration weights as tie
strength, namely the normalized measurement of tie weights
in an ego network. Tie strength is formally defined by
suv = wuv∑

k∈Γ(u) wuk
, where Γ(u) is u’s collaborators. Note

that it is not necessary that suv is equal to svu. To study the
collaboration signature in u’s collaboration ego network, we
further define the following four measures that are based on
our definition of the collaboration signature:
• Sociability: the number of collaborators, |Γ(u)|;
• Dependence: the fraction of collaborators fulfilling

suv > svu,
∑

v∈Γ(u) I(suv>svu)

|Γ(u)| ;
• Diversity: the Shannon entropy of collaboration

strength distribution, −
∑

v∈Γ(u) suv × log(suv);
• Self-collaboration: the fraction of self-collaboration,

suu.
Sociability is derived from Dunbar’s number, which is the

suggested number of social connections that an individual
can comfortably maintain due to cognitive limitations [21];
it thus provides a means of examining the number of
collaboration relationships that researchers can maintain
throughout their academic careers. Dependence indicates
the level of one’s research dependence. For example, when
suv > svu, papers coauthored by u and v have a relatively
larger contribution to u’s publications in the mutual collab-
oration relationship between u and v than they do to v’s,
which means that u relies more on his/her collaboration
relationship with v than v relies on his/her relationship with
u. Diversity is defined as the Shannon entropy of a re-
searcher’s collaboration behaviors; it thus provides a means
of investigating how researchers distribute scientific collab-
orations among different collaborators. A higher diversity
score implies that a researcher splits his/her collaboration
effort more evenly among collaborators. Self-collaboration is
formulated as a researcher’s independence in collaboration.
A higher self-collaboration score indicates that an individual
researcher devotes more effort to independent research than
to collaborative endeavors.

IV. COLLABORATION SIGNATURES AND
SCIENTIFIC IMPACT

In this section, we investigate the correspondence between
the collaboration signatures of researchers in the academic
social network and their scientific impact in academia.
We quantify researchers’ scientific impact based on three
intuitive measures: h-index, top-venue papers, and big-hit
publications.

A. Collaboration Signatures vs. h-index

As a function of both the number of publications and the
number of citations per publication [7], the h-index is de-
signed to improve upon single-dimension measures such as
citation or publication counts. Despite debate over whether
the h-index is an effective measure of scientific impact, it
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Figure 4. Collaboration Signature vs. h-index. x-axis: the xth year of
one’s research career. y-axis: (a) sociability; (b) independence; (c) diversity;
(d) self-collaboration. The minimum career length is set to 10 and all
characteristics are observed at a 95% confidence interval.

has become a de facto standard for measuring academic
performance and has been applied to several widely used
academic evaluation systems, including ArnetMiner2 and
Google Scholar3. Hirsch has also suggested that the h-index
has the potential to predict academic honors and awards.
In this work, we use the h-index as a measure of scientific
impact. By examining the connection between researchers’
collaboration signatures and their respective h-indices, we
gain insight into the relationship between these collaboration
signatures and scientific impact.

Figure 4 shows how collaboration signatures reveal sci-
entific impact as measured by h-index. In this figure, the
h-index is discretized into seven intervals, each representing
a group. A researcher is a member of the group represented
by the interval in which his or her h-index is contained.
The resulting intervals from [1, 9] to [60, 123] contain
21393, 23434, 5901, 1849, 647, 247, and 172 researchers,
respectively. In addition to these groups, we also plot the
collaboration signatures of Turing Award winners from 1966
to 2010. In Figure 5 we illustrate the h-indices (as of 2012)
of Turing Award winners with respect to the length of their
research careers when they received the Turing Award. The
length of the researchers’ careers prior to winning the award
ranges from 11 to 43 years, while their h-indices range from
25 to 83.

We characterize a researcher’s collaboration signature at
each year of his or her research career, where the beginning
of an individual’s research career is defined as date of the
earliest publication attributed to the researcher in our dataset.
To construct each researcher’s collaboration ego network and

2https://aminer.org/
3http://scholar.google.com/
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Figure 5. Turing Award Winners. x-axis: the number of years since the
researcher first published a paper when presented with the Turing Award;
y-axis: the researcher’s h-index as of 2012.

to calculate his or her collaboration signature, we extract
all of the researcher’s publications spanning the entirety his
or her entire research career. We see that researchers with
different levels of h-indices exhibit significant differences in
their collaboration signatures. Additionally, Turing Award
winners have the most distinctive collaboration signatures
from among the researchers in all four measures.

Figure 4(a) shows the evolution of researchers’ sociability
across their research careers. Generally, we observe that
researchers with higher h-indices have greater sociability
than those with lower h-indices, regardless of career stage.
We also observe that sociability tends to increase mono-
tonically for all groups of researchers until it reaches a
peak value. The particular peak value of sociability differs
for each group, indicating that researchers with different
h-indices reach their sociability peaks at different points
in their research careers. Through the first five years of
a researcher’s career—the time that may be characterized
by his or her graduate studies—each group of researchers
shows the same increasing trend in sociability. From the
fifth to tenth years, the h-index groups ([1, 9], [10,19], and
[20,29]) start to follow different trends from other groups.
The 30s, 40s, 50s, and 60s h-index groups reach their peak
sociability values at their 17th, 19th, 22th, and 25th year,
respectively. Surprisingly, we find that as a noteworthy group
of researchers in computer science, Turing Award winners
demonstrate a far lower and more stable level of sociability
across their careers than the other groups of researchers.

Figure 4(b) shows the evolution of researchers’ depen-
dence across their academic careers. By the fifth year—the
typifying end of a budding researcher’s graduate studies—
researchers with different h-indices exhibit different degrees
of collaboration dependence. Also by their fifth year, the
50s and 60s groups exhibit dependence scores around 0.5.
In general, researchers’ dependence scores decrease at the
beginning of their careers and only begin to increase after
they have been a member of the research community for
more than fifteen years. We also observe that high-h-index
researchers maintain consistently lower dependence scores.

Figure 4(c) shows the diversity of researchers’ collabora-
tion behaviors. Researchers start to display different diversity
values at around the 8th year of their careers. The diversity
values of the 10s, 20s, 30s, and >40s groups stop increasing
and stabilize around the 8th, 12th, 15th, 18th year of their
research careers, respectively.
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Figure 6. Collaboration Signatures vs. Top Venues.

Figure 4(d) shows the evolution of researchers’ self-
collaborations. We see that the long-term difference in self-
collaboration between groups of scholars with different
h-indices can be identified even at the very early stage
of their careers. We also observe that the fraction of re-
searchers’ self-collaborations decreases gradually over time,
though Turing Award winners exhibit much higher self-
collaboration values than other researchers. Overall, the
fraction of self-collaboration reaches a stable state after one
has been a member of the research community for more than
fifteen years.

Summary. Based on the above analysis, we arrive at the fol-
lowing conclusions. First, collaboration signatures can serve
to distinguish researchers of different levels of scientific
impact (as evaluated by h-index). Second, researchers tend to
produce stabilized collaboration signatures only after about
fifteen years from the start of their research careers. Third,
researchers form different collaboration signatures during
the first fifteen years of their research careers, which can
significantly affect their future scientific impact. Finally, as
a representative group of outstanding computer scientists,
Turing Award winners produce the most distinguishable
collaboration signatures, even from the very early stages of
their careers.

B. Collaboration Signatures vs. Top Venues

Researchers aim to frequently publish influential scientific
work in prestigious venues, whereby their work can be
effectively disseminated and their influence accumulated. In
turn, these influential publications serve to maintain or even
elevate the prestige of their respective venues. Thus when
assessing scientific impact, it is important to account not
only for the influence of a paper itself, but also for the
prestige of the venue in which it is published. To this end,
we count the number of “top-venue” papers as a measure of
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Figure 7. Collaboration Signatures vs. Big Hits.

a researcher’s scientific impact. Specifically, we extract eight
focus areas in computer science that are considered to have
top publication venues, namely Artificial Intelligence (AI),
Information Retrieval (IR), Computer Vision (CV), Machine
Learning (ML), Theory (TH), Databases (DB), Data Mining
(DM), and Natural Language Processing (NLP). For each
area, we choose three top venues4. Finally, we use the
number of top-venue papers in each area to quantify a
researcher’s scientific impact.

Figure 6 shows the collaboration signatures of researchers
with different scientific impact (as evaluated by the number
of top-venue papers). The x-axis of the figure represents the
number of top-venue publications in each area. Note that, if
a researcher publishes in top venues for more than one area,
the area with the majority of the researcher’s publications is
designated as his or her research area.

From Figure 6(a), we find that, regardless of research area,
the degree of sociability exhibited by researchers tends to
increase as they produce more top-venue publications. We
observe a similar trend for diversity scores (see Figure 4(c)),
where research diversity tends to increase with the number of
publications that reach top-venues. By contrast, Figure 4(b)
shows that research dependence decreases with the number
of publications that reach top-venues. Thus as researchers
achieve greater scientific impact (as measured by a greater
number of top-venue papers), their research dependence
decreases while their collaboration diversity increases. In
Figure 6(d), we observe that there is no obvious trend
between the degree of self-collaboration and the number top-
venue publications. All of these observations are hold true
for all of the computer science research areas considered.

4AI: IJCAI, AAAI, ECAI. IR: SIGIR, ECIR, TREC. CV: CVPR, ICCV, ECCV.
ML: ICML, NIPS, ECML. TH: FOCS, STOC, SODA. DB: SIGMOD, VLDB, ICDE.
DM: KDD, ICDM, SDM. NLP: ACL, EMNLP, COLING.
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C. Collaboration Signatures vs. Big Hits

Famous researchers, such as Turing Award winners, are
often recognized for their most-influential work. For ex-
ample, the Nobel Prize in Physics is usually awarded to
researchers in recognition of their outstanding contributions
to science disseminated through a landmark publication [22].
As another example, the ACM Infosys Foundation Award in
2013 was presented to Dr. David Blei “for pioneering the
area of topic modeling,” with the accolade explicitly refer-
encing his landmark paper on Latent Dirichlet Allocation5.
Accordingly, in this work we consider the “big-hit” paper
(i.e., the most cited one among a researcher’s publications)
as a measure of scientific impact.

Figure 7 shows the collaboration signatures of researchers
with different levels of big-hit papers. First, each researcher
is associated with the number of citations of his or her big-
hit publication. For each year, we then classify each new
researcher into one of four groups based on the number of
citations accumulated by his or her big-hit paper, namely
[10, 100), [100, 1000), [1000, 10000), and [10000, +∞).
The x-axis shows the year from 1970 to 2000 and the y-
axis represents the four properties of collaboration signature.

We observe that researchers with different levels of big-
hit papers display significantly different collaboration sig-
natures. Similar to the observations above, on the one hand
researchers with high scientific impact have high sociabil-
ity and diversity, while on the other hand they have low
dependence in collaborations. We also observe that the self-
collaboration ratio is not indicative of the scientific impact
that is quantified by big-hit papers. Finally, we observe that,
in general, while different groups of researchers maintain
different collaboration signatures, each group of scholars
at each year has smoothly equal collaboration signatures
from 1970 to 2000 in terms of sociability, dependence, and
diversity from Figures 7(a), 7(b), and 7(c), respectively.

Summary. In the above sections, we empirically explore
the correspondence between collaboration signatures and
scientific impact as measured by h-index, number of top-
venue papers, and number of citations for big-hit papers. Re-
gardless of which measure of scientific impact is employed,
researchers of a given level of scientific impact appear to
retain similar collaboration signatures. Furthermore, we find
that researchers that exhibit different levels of scientific
impact can be distinguished by four signature measures of
collaboration, and that these signatures may even collectively
serve as an indicator of their future scientific impact. Con-
sequently, our observations engender important implications
for applications that require the understanding of scientists’
collaboration behaviors, as well as for the study of the
mechanisms that underlie the development and progression
of scientific impact.

5http://awards.acm.org/award winners/blei 3974465.cfm
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Figure 8. Extent to which scientific impact can be revealed from
collaboration signatures, conditioned on (a) the start year of the
researchers’ academic careers (x-axis) or (b) the first x years of the
researchers’ academic careers (x-axis).
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Figure 9. h-indices in data vs. predicted h-indices from collaboration
signatures. x-axis: h-indices in data; y-axis: predicted h-indices. A diagonal
line from (0, 0) to (123, 123) would denote perfect prediction results.

V. CAN SCIENTIFIC IMPACT BE PREDICTED FROM
COLLABORATION SIGNATURES?

In this section, via two prediction-based case studies,
we further explore the extent to which research scholars’
scientific impact can be inferred from their collaboration
signatures. Please note that the focus of these studies is
to demonstrate how scientific impact can be revealed from
collaboration signatures.

A. Predicting for Different Generations

Our first case study is to use the collaboration signatures
of researchers who enter academia in different periods to
predict their respective h-indices. For example, by setting
five year intervals, we divide researchers into 11 distinct
groups, ranging from 1960 to 2004, based on the first year
they joined academia (e.g., [1960, 1964], [1965, 1969], · · · ,
[2000, 2004]). We then collect the researchers’ collaboration
signatures, which we use as features to predict their h-indices
in 2012 (the last year represented in our dataset).

As our goal is to provide further evidence of the cor-
respondence between collaboration signatures and scientific
impact, we use linear regression to report the results, primar-
ily due to the method’s predictive power and simplicity. The
only features used are the four values previously elaborated
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upon that are based on researchers’ collaboration signa-
tures, namely: sociability, dependence, diversity, and self-
collaboration. To demonstrate the extent to which scientific
impact can be revealed by collaboration signatures, we em-
ploy two methods to evaluate the results of linear regression,
R2 [23] and Pearson correlation coefficient (PCC).

To illustrate the use of collaboration signatures, we
demonstrate how they reveal the scientific impact (as quan-
tified by h-index) generated by researchers whose careers
began in different years. Figure 8(a) reports the prediction
performance for 11 groups of researchers as measured by
R2 and PCC. We observe that between 1960 and 1980, R2

ranges between 0.6 and 0.8, while PCC ranges between 0.8
and 0.93. This performance indicates that researchers’ scien-
tific impact can be reasonably inferred from our four simple
collaboration signatures. We also note that the prediction
performance declines with time. The reason for this decline
is trivial: if some researchers join academia later than others,
then less data—and thus less information—can be extracted
from their respective signatures.

Further, we compare the actual h-indices with our pre-
dicted ones. In Figures 9 (a,b,c), the black circles correspond
to the average predicted h-index per bin. These figures
clearly illustrate the decline in inferential power associated
with limited time constraints.

B. Predicting from the Early Stages

Our second case study is to examine how our ability
to infer a researcher’s scientific impact from his or her
collaboration signatures is affected by the length of his or
her research career (and hence the length of the extracted
signatures). To this end, we first choose researchers who
have publication records in the dataset that extend at least
30 years. We then extract the researchers’ yearly collab-
oration signatures from their publications. The cumulative
collaboration signatures beginning from the first career year
are used as the input of the regression model.

Figure 8(b) demonstrates that with longer (in terms of
years) collaboration signatures, future scientific impact can
be predicted with increasing fidelity, as measured by R2 and
PCC. By using the first year data, the R2 and PCC are 0.25
and 0.5, respectively. By using 15-year collaboration data,
however, the performance reaches 0.55 and 0.75 in terms of
R2 and PCC, respectively. These prediction results serve to
validate our observations that collaboration signatures can
reveal scientists’ scientific impact (see Figure 4).

Similarly, we also provide the comparisons between the
actual h-indices and the predicted h-indices in Figures 9
(d,e,f). The performance improves when additional years of
signatures are employed for the inference.

Overall, these two predictive case studies provide ev-
idence that scientists’ collaboration signatures can serve
as indicators of their scientific impact. The experimental

results also demonstrate the effectiveness of collaboration
signatures for predicting future scientific impact.

VI. RELATED WORK

Science has developed a merit-driven career process
whereby an individual is promoted through various career
stages based on the evaluation of his or her past achieve-
ments and the perceived potential for future achievement.
Correctly assessing past scientific impact and the potential
for future impact is, therefore, absolutely essential for the
effective evaluation of individual scientists.

Several measures have been proposed for assessing a
scholar’s scientific impact [24]. Perhaps the most widely
used impact measure is the number of citations a scholar
has accumulated. However, citation counts are contingent
on the length of one’s scientific career, and thus favor elder
scientists. To mitigate this and other related effects, several
alternate measures have been proposed that in some way
rely on citations. One such measure, the h-index, attempts to
measure both the productivity and impact of the published
work of a research scholar [7]. In this work, we propose
to measure the scientific impact of research scientists by
using not only the h-index, but also the number of top-venue
publications and the citations of big-hit publications.

Despite debate over the suitability of scientific impact
measures, predicting a scholar’s future impact has nonethe-
less received significant attention [5], [8], [25]. As a focal
effort, the KDD Cup 2003 held a data mining competition
to estimate citation counts [10], and many efforts to predict
the number of future citations for scholarly work have fol-
lowed [2], [9], [5], [8]. More recently, Dong et al. formulate
a scientific impact prediction problem of inferring whether
a given publication will increase its authors’ h-indices in
the future [12]. Although a tremendous amount of work
has explored the prediction of future scientific impact, the
study of the effects of collaboration patterns in academia on
scholars’ scientific impact has received scant attention.

Yet, it has been repeatedly demonstrated that networks
can have a profound impact on our lives. Shi et al. study
the interplay between a publication’s citation network and
its scientific impact [26]. Yang et al. propose to infer the
number of future collaborators in academic social networks
by using historical data [27]. In the work of [28], [29], the
authors measure researchers’ scientific impact using their
coauthorship network centralities. These discoveries, among
others, inspire our exploration into the connection between
collaboration networks and scientific impact.

To that end, we demonstrate that research scientists exhibit
distinguishable collaboration signatures. We find that these
collaboration signatures can serve as powerful indicators of
real-world scientific impact, and can be applied to other
tasks in academic network mining, such as name disam-
biguation [30] and collaboration prediction [31], [32].
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VII. CONCLUSION

In this work, we study the interplay of collaboration be-
haviors in academic social networks and research scholars’
scientific impact. We focus on the collaboration ego network
and formally define the collaboration signature of a scientist.

We discovered that scientists with similar level of scien-
tific impact appear to retain similar collaboration signatures.
We also observed that scientists’ collaboration signatures
are indicative of the progression of their scientific impact.
Additionally, we found that the collaboration signature is
a strong indicator of researchers’ h-indices. Overall, our
findings provide empirical evidence that scientific impact
can be inferred from collaboration signatures, and also offer
important implications for understanding the mechanisms
that underlie the progression of scientific impact.

Despite the promising results, there is still much room left
for future work. First, while the function of collaboration
signatures has been identified in the area of computer
science, we have limited knowledge about whether these
observations are equally valid in other scientific disciplines.
Second, in this work we refrain from examining the causality
between scientific impact growth and collaboration signature
development, which could be expanded in future work.
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